Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 45(4): e2300003, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789559

RESUMO

Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-ß-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.


Assuntos
MAP Quinase Quinase Quinases , Músculo Esquelético , Humanos , Hipertrofia , MAP Quinase Quinase Quinases/metabolismo , Transdução de Sinais/fisiologia
2.
FASEB J ; 37(2): e22727, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583689

RESUMO

Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRα/γ) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRα/γ knockout mice to investigate the effect of ERRα/γ deletion on muscle and exercise parameters. Individual knockout of ERRα/γ did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRα and ERRγ together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRα/γ mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.


Assuntos
Mitocôndrias , Músculo Esquelético , Camundongos , Animais , Músculo Esquelético/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Estrogênios/metabolismo
3.
FASEB J ; 36(12): e22666, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36412933

RESUMO

Skeletal muscle atrophy is a prevalent complication in multiple chronic diseases and disuse conditions. Fibroblast growth factor-inducible 14 (Fn14) is a member of the TNF receptor superfamily and a bona fide receptor of the TWEAK cytokine. Accumulating evidence suggests that Fn14 levels are increased in catabolic conditions as well as during exercise. However, the role of Fn14 in the regulation of skeletal muscle mass and function remains poorly understood. In this study, through the generation of novel skeletal muscle-specific Fn14-knockout mice, we have investigated the muscle role of Fn14 in the regulation of exercise capacity and denervation-induced muscle atrophy. Our results demonstrate that there was no difference in skeletal muscle mass between control and muscle-specific Fn14-knockout mice. Nevertheless, the deletion of Fn14 in skeletal muscle significantly improved exercise capacity and resistance to fatigue. This effect of Fn14 deletion is associated with an increased proportion of oxidative myofibers and higher capillaries number per myofiber in skeletal muscle. Furthermore, our results demonstrate that targeted deletion of Fn14 inhibits denervation-induced muscle atrophy in adult mice. Deletion of Fn14 reduced the expression of components of the ubiquitin-proteasome system and non-canonical NF-kappa B signaling in denervated skeletal muscle, as well as increased the phosphorylation of Akt kinase and FoxO3a transcription factor. Collectively, our results demonstrate that targeted inhibition of Fn14 improves exercise tolerance and inhibits denervation-induced muscle atrophy in adult mice.


Assuntos
Tolerância ao Exercício , Fatores de Necrose Tumoral , Camundongos , Animais , Receptor de TWEAK/genética , Fatores de Necrose Tumoral/metabolismo , Atrofia Muscular/metabolismo , Camundongos Knockout
4.
Cell ; 134(3): 405-15, 2008 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-18674809

RESUMO

The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/agonistas , Resistência Física/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleotídeos/farmacologia , Tiazóis/farmacologia , Proteínas Quinases Ativadas por AMP , Administração Oral , Aminoimidazol Carboxamida/administração & dosagem , Aminoimidazol Carboxamida/farmacologia , Animais , Biomimética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Ribonucleotídeos/administração & dosagem
5.
Int J Sports Med ; 44(9): 609-617, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36787804

RESUMO

Skeletal muscle is a highly plastic tissue that can alter its metabolic and contractile features, as well as regenerative potential in response to exercise and other conditions. Multiple signaling factors including metabolites, kinases, receptors, and transcriptional factors have been studied in the regulation of skeletal muscle plasticity. Recently, estrogen-related receptors (ERRs) have emerged as a critical transcriptional hub in control of skeletal muscle homeostasis. ERRα and ERRγ - the two highly expressed ERR sub-types in the muscle respond to various extracellular cues such as exercise, hypoxia, fasting and dietary factors, in turn regulating gene expression in the skeletal muscle. On the other hand, conditions such as diabetes and muscular dystrophy suppress expression of ERRs in the skeletal muscle, likely contributing to disease progression. We highlight key functions of ERRs in the skeletal muscle including the regulation of fiber type, mitochondrial metabolism, vascularization, and regeneration. We also describe how ERRs are regulated in the skeletal muscle, and their interaction with important muscle regulators (e. g. AMPK and PGCs). Finally, we identify critical gaps in our understanding of ERR signaling in the skeletal muscle, and suggest future areas of investigation to advance ERRs as potential targets for function promoting therapeutics in muscle diseases.


Assuntos
Músculo Esquelético , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Homeostase/fisiologia , Estrogênios
6.
FASEB J ; 35(5): e21480, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788962

RESUMO

Skeletal muscle ischemia is a major consequence of peripheral arterial disease (PAD) or critical limb ischemia (CLI). Although therapeutic options for resolving muscle ischemia in PAD/CLI are limited, the issue is compounded by poor understanding of the mechanisms driving muscle vascularization. We found that nuclear receptor estrogen-related receptor alpha (ERRα) expression is induced in murine skeletal muscle by hindlimb ischemia (HLI), and in cultured myotubes by hypoxia, suggesting a potential role for ERRα in ischemic response. To test this, we generated skeletal muscle-specific ERRα transgenic (TG) mice. In these mice, ERRα drives myofiber type switch from glycolytic type IIB to oxidative type IIA/IIX myofibers, which are typically associated with more vascular supply in muscle. Indeed, RNA sequencing and functional enrichment analysis of TG muscle revealed that "paracrine angiogenesis" is the top-ranked transcriptional program activated by ERRα in the skeletal muscle. Immunohistochemistry and angiography showed that ERRα overexpression increases baseline capillarity, arterioles and non-leaky blood vessel formation in the skeletal muscles. Moreover, ERRα overexpression facilitates ischemic neo-angiogenesis and perfusion recovery in hindlimb musculature of mice subjected to HLI. Therefore, ERRα is a hypoxia inducible nuclear receptor that is involved in skeletal muscle angiogenesis and could be potentially targeted for treating PAD/CLI.


Assuntos
Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Receptores de Estrogênio/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Estrogênio/genética , Receptor ERRalfa Relacionado ao Estrogênio
7.
Am J Physiol Cell Physiol ; 319(3): C541-C551, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697599

RESUMO

Lin28a/miRNA let-7b-5p pathway has emerged as a key regulators of energy homeostasis in the skeletal muscle. However, the mechanism through which this pathway is regulated in the skeletal muscle has remained unclear. We have found that 8 wk of aerobic training (Tr) markedly decreased let-7b-5p expression in murine skeletal muscle, whereas high-fat diet (Hfd) increased its expression. Conversely, Lin28a expression, a well-known inhibitor of let-7b-5p, was induced by Tr and decreased by Hfd. Similarly, in human muscle biopsies, Tr increased LIN28 expression and decreased let-7b-5p expression. Bioinformatics analysis of LIN28a DNA sequence revealed that its enrichment in peroxisome proliferator-activated receptor delta (PPARδ) binding sites, which is a well-known metabolic regulator of exercise. Treatment of primary mouse skeletal muscle cells or C2C12 cells with PPARδ activators GW501516 and AICAR increased Lin28a expression. Lin28a and let-7b-5p expression was also regulated by PPARδ coregulators. While PPARγ coactivator-1α (PGC1α) increased Lin28a expression, corepressor NCoR1 decreased its expression. Furthermore, PGC1α markedly reduced the let-7b-5p expression. PGC1α-mediated induction of Lin28a expression was blocked by the PPARδ inhibitor GSK0660. In agreement, Lin28a expression was downregulated in PPARδ knocked-down cells leading to increased let-7b-5p expression. Finally, we show that modulation of the Lin28a-let-7b-5p pathway in muscle cells leads to changes in mitochondrial metabolism in PGC1α dependent fashion. In summary, we demonstrate that Lin28a-let-7b-5p is a direct target of PPARδ in the skeletal muscle, where it impacts mitochondrial respiration.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular , Regulação para Baixo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , PPAR delta/genética
8.
Breast Cancer Res Treat ; 170(2): 279-292, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29574636

RESUMO

PURPOSE: G protein-coupled receptors (GPCRs) represent the largest family of druggable targets in human genome. Although several GPCRs can cross-talk with the human epidermal growth factor receptors (HERs), the expression and function of most GPCRs remain unknown in HER2+ breast cancer (BC). In this study, we aimed to evaluate gene expression of GPCRs in tumorigenic or anti-HER2 drug-resistant cells and to understand the potential role of candidate GPCRs in HER2+ BC. METHODS: Gene expression of 352 GPCRs was profiled in Aldeflur+ tumorigenic versus Aldeflur- population and anti-HER2 therapy-resistant derivatives versus parental cells of HER2+ BT474 cells. The GPCR candidates were confirmed in 7 additional HER2+ BC cell line models and publicly available patient dataset. Anchorage-dependent and anchorage-independent cell growth, mammosphere formation, and migration/invasion were evaluated upon GPR110 knockdown by siRNA in BT474 and SKBR3 parental and lapatinib+ trastuzumab-resistant (LTR) cells. RESULTS: Adhesion and class A GPCRs were overexpressed in Aldeflur+ and anti-HER2 therapy-resistant population of BT474 cells, respectively. GPR110 was the only GPCR overexpressed in Aldeflur+ and anti-HER2 therapy-resistant population in BT474, SKBR3, HCC1569, MDA-MB-361, AU565, and/or HCC202 cells and in HER2+ BC subtype in patient tumors. Using BT474 and SKBR3 parental and LTR cells, we found that GPR110 knockdown significantly reduced anchorage-dependent/independent cell growth as well as migration/invasion of parental and LTR cells and mammosphere formation in LTR derivatives and not in parental cells. CONCLUSION: Our data suggest a potential role of GPR110 in tumorigenicity and in tumor cell dissemination in HER2+ BC.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Oncogênicas/metabolismo , Receptor ErbB-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Terapia de Alvo Molecular , Proteínas Oncogênicas/genética , RNA Interferente Pequeno/genética , Receptor ErbB-2/genética , Receptores Acoplados a Proteínas G/genética , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Biol Chem ; 289(37): 25556-70, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25053409

RESUMO

Rapamycin at high doses (2-10 mg/kg body weight) inhibits mammalian target of rapamycin complex 1 (mTORC1) and protein synthesis in mice. In contrast, low doses of rapamycin (10 µg/kg) increase mTORC1 activity and protein synthesis in skeletal muscle. Similar changes are found with SLF (synthetic ligand for FKBP12, which does not inhibit mTORC1) and in mice with a skeletal muscle-specific FKBP12 deficiency. These interventions also increase Ca(2+) influx to enhance refilling of sarcoplasmic reticulum Ca(2+) stores, slow muscle fatigue, and increase running endurance without negatively impacting cardiac function. FKBP12 deficiency or longer treatments with low dose rapamycin or SLF increase the percentage of type I fibers, further adding to fatigue resistance. We demonstrate that FKBP12 and its ligands impact multiple aspects of muscle function.


Assuntos
Ligantes , Músculo Esquelético/crescimento & desenvolvimento , Sirolimo/administração & dosagem , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Serina-Treonina Quinases TOR , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/genética
10.
FASEB J ; 27(10): 4004-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23781095

RESUMO

Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ (ERRγ), and its metabolic and angiogenic targets are down-regulated (50-85%) in skeletal muscles of mdx mice (DMD model) vs. wild-type mice. Corelatively, oxidative myofibers, muscle vasculature, and exercise tolerance (33%) are decreased in mdx vs. wild-type mice. Overexpressing ERRγ selectively in the dystrophic muscles of the mdx mice restored metabolic and angiogenic gene expression compared with control mdx mice. Further, ERRγ enhanced muscle oxidative myofibers, vasculature, and blood flow (by 33-66%) and improved exercise tolerance (by 75%) in the dystrophic mice. Restoring muscle ERRγ pathway ameliorated muscle damage and also prevented DMD hallmarks of postexercise muscle damage, hypoxia, and fatigue in mdx mice. Notably, ERRγ did not restore sarcolemmal DAG complex, which is thus dispensable for antidystrophic effects of ERRγ. In summary, ERRγ-dependent metabolic and angiogenic gene program is defective in DMD, and we demonstrate that its restoration is a potential strategy for treating muscular dystrophy.


Assuntos
Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Creatina Quinase , Complexo de Proteínas Associadas Distrofina/genética , Complexo de Proteínas Associadas Distrofina/metabolismo , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Distrofia Muscular de Duchenne/genética , Receptores de Estrogênio/genética , Utrofina/genética , Utrofina/metabolismo
11.
Circ Res ; 110(8): 1087-96, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22415017

RESUMO

RATIONALE: Oxidative myofibers in the skeletal muscles express high levels of angiogenic factors, have dense vasculature, and promptly revascularize during ischemia. Estrogen-related receptor-gamma (ERRγ) activates genes that govern metabolic and vascular features typical to oxidative myofibers. Therefore, ERRγ-dependent remodeling of the myofibers may promote neoangiogenesis and restoration of blood perfusion in skeletal muscle ischemia. OBJECTIVE: To investigate the muscle fiber type remodeling by ERRγ and its role in the vascular recovery of ischemic muscle. METHODS AND RESULTS: Using immunohistology, we show that skeletal muscle-specific transgenic overexpression of ERRγ increases the proportions of oxidative and densely vascularized type IIA and IIX myofibers and decreases glycolytic and less vascularized type IIB myofibers. This myofiber remodeling results in a higher basal blood flow in the transgenic skeletal muscle. By applying unilateral hind limb ischemia to transgenic and wild-type mice, we found accelerated revascularization (fluorescent microangiography), restoration of blood perfusion (laser Doppler flowmetry), and muscle repair (Evans blue dye exclusion) in transgenic compared to wild-type ischemic muscles. This ameliorative effect is linked to enhanced neoangiogenesis (CD31 staining and microfil perfusion) by ERRγ. Using cultured muscle cells in which ERRγ is inactivated, we show that the receptor is dispensable for the classical hypoxic response of transcriptional upregulation and secretion of vascular endothelial growth factor A. Rather, the ameliorative effect of ERRγ is linked to the receptor-mediated increase in oxidative myofibers that inherently express and secrete high levels of angiogenic factors. CONCLUSIONS: The ERRγ is a hypoxia-independent inducer of neoangiogenesis that can promote reparative revascularization.


Assuntos
Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Receptores de Estrogênio/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Membro Posterior , Imuno-Histoquímica , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Fluxometria por Laser-Doppler , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Receptores de Estrogênio/genética , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Methodist Debakey Cardiovasc J ; 19(5): 58-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028974

RESUMO

Exercise has a profound effect on cardiovascular disease, particularly through vascular remodeling and regeneration. Peripheral artery disease (PAD) is one such cardiovascular condition that benefits from regular exercise or rehabilitative physical therapy in terms of slowing the progression of disease and delaying amputations. Various rodent pre-clinical studies using models of PAD and exercise have shed light on molecular pathways of vascular regeneration. Here, I review key exercise-activated signaling pathways (nuclear receptors, kinases, and hypoxia inducible factors) in the skeletal muscle that drive paracrine regenerative angiogenesis. The rationale for highlighting the skeletal muscle is that it is the largest organ recruited during exercise. During exercise, skeletal muscle releases several myokines, including angiogenic factors and cytokines that drive tissue vascular regeneration via activation of endothelial cells, as well as by recruiting immune and endothelial progenitor cells. Some of these core exercise-activated pathways can be extrapolated to vascular regeneration in other organs. I also highlight future areas of exercise research (including metabolomics, single cell transcriptomics, and extracellular vesicle biology) to advance our understanding of how exercise induces vascular regeneration at the molecular level, and propose the idea of "exercise-mimicking" therapeutics for vascular recovery.


Assuntos
Células Endoteliais , Doença Arterial Periférica , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Isquemia/terapia , Isquemia/metabolismo , Doença Arterial Periférica/terapia , Exercício Físico , Regeneração/fisiologia , Neovascularização Fisiológica
13.
FEBS J ; 290(19): 4596-4613, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35942640

RESUMO

Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.


Assuntos
Doenças Musculares , Doença Arterial Periférica , Humanos , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/genética , Doença Arterial Periférica/metabolismo , Doenças Musculares/tratamento farmacológico , Doenças Musculares/genética , Doenças Musculares/metabolismo , Músculo Esquelético/metabolismo , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Respiração Celular
14.
J Am Heart Assoc ; 12(16): e028880, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548153

RESUMO

Background Peripheral arterial disease and critical limb ischemia are cardiovascular complications associated with vascular insufficiency, oxidative metabolic dysfunction, and myopathy in the limbs. Estrogen-related receptor gamma (ERRγ) has emerged as a dual regulator of paracrine angiogenesis and oxidative metabolism through transgenic mouse studies. Here our objective was to investigate whether postischemic intramuscular targeting of ERRγ via gene therapy promotes ischemic recovery in a preclinical model of peripheral arterial disease/critical limb ischemia. Methods and Results Adeno-associated virus 9 (AAV9) Esrrg gene delivery vector was developed and first tested via intramuscular injection in murine skeletal muscle. AAV9-Esrrg robustly increased ERRγ protein expression, induced angiogenic and oxidative genes, and boosted capillary density and succinate dehydrogenase oxidative metabolic activity in skeletal muscles of C57Bl/6J mice. Next, hindlimb ischemia was induced via unilateral femoral vessel ligation in mice, followed by intramuscular AAV9-Esrrg (or AAV9-green fluorescent protein) gene delivery 24 hours after injury. ERRγ overexpression increased ischemic neoangiogenesis and markers of endothelial activation, and significantly improved ischemic revascularization measured using laser Doppler flowmetry. Moreover, ERRγ overexpression restored succinate dehydrogenase oxidative metabolic capacity in ischemic muscle, which correlated with increased mitochondrial respiratory complex protein expression. Most importantly, myofiber size to number quantification revealed that AAV9-Esrrg restores myofibrillar size and mitigates ischemia-induced myopathy. Conclusions These results demonstrate that intramuscular AAV9-Esrrg delivery rescues ischemic pathology after hindlimb ischemia, underscoring that Esrrg gene therapy or pharmacological activation could be a promising strategy for the management of peripheral arterial disease/critical limb ischemia.


Assuntos
Doença Arterial Periférica , Succinato Desidrogenase , Camundongos , Animais , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Isquemia Crônica Crítica de Membro , Neovascularização Fisiológica/genética , Músculo Esquelético/irrigação sanguínea , Terapia Genética , Camundongos Transgênicos , Doença Arterial Periférica/terapia , Isquemia/genética , Isquemia/terapia , Isquemia/patologia , Estrogênios/metabolismo , Membro Posterior/irrigação sanguínea , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
15.
J Gerontol A Biol Sci Med Sci ; 78(Suppl 1): 44-52, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37325960

RESUMO

In recent years, several new classes of therapies have been investigated with their potential for restoring or improving physical functioning in older adults. These have included Mas receptor agonists, regulators of mitophagy, skeletal muscle troponin activators, anti-inflammatory compounds, and targets of orphan nuclear receptors. The present article summarizes recent developments of the function-promoting effects of these exciting new compounds and shares relevant preclinical and clinical data related to their safety and efficacy. The development of novel compounds in this area is expanding and likely will need the advent of a new treatment paradigm for age-associated mobility loss and disability.


Assuntos
Anti-Inflamatórios , Receptores Nucleares Órfãos
16.
J Lipid Res ; 53(12): 2610-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23028113

RESUMO

Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. Identifying novel regulators of mitochondrial bioenergetics will broaden our understanding of regulatory checkpoints that coordinate complex metabolic pathways. We previously showed that Nur77, an orphan nuclear receptor of the NR4A family, regulates the expression of genes linked to glucose utilization. Here we demonstrate that expression of Nur77 in skeletal muscle also enhances mitochondrial function. We generated MCK-Nur77 transgenic mice that express wild-type Nur77 specifically in skeletal muscle. Nur77-overexpressing muscle had increased abundance of oxidative muscle fibers and mitochondrial DNA content. Transgenic muscle also exhibited enhanced oxidative metabolism, suggestive of increased mitochondrial activity. Metabolomic analysis confirmed that Nur77 transgenic muscle favored fatty acid oxidation over glucose oxidation, mimicking the metabolic profile of fasting. Nur77 expression also improved the intrinsic respiratory capacity of isolated mitochondria, likely due to the increased abundance of complex I of the electron transport chain. These changes in mitochondrial metabolism translated to improved muscle contractile function ex vivo and improved cold tolerance in vivo. Our studies outline a novel role for Nur77 in the regulation of oxidative metabolism and mitochondrial activity in skeletal muscle.


Assuntos
Músculo Esquelético/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Animais , Creatina Quinase/genética , Creatina Quinase/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/enzimologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Oxirredução , Regiões Promotoras Genéticas/genética
17.
Exp Physiol ; 97(1): 125-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22058168

RESUMO

Myostatin regulates both muscle mass and muscle metabolism. The myostatin null (MSTN(-/-)) mouse has a hypermuscular phenotype owing to both hypertrophy and hyperplasia of the myofibres. The enlarged muscles display a reliance on glycolysis for energy production; however, enlarged muscles that develop in the absence of myostatin have compromised force-generating capacity. Recent evidence has suggested that endurance exercise training increases the oxidative properties of muscle. Here, we aimed to identify key changes in the muscle phenotype of MSTN(-/-) mice that can be induced by training. To this end, we subjected MSTN(-/-) mice to two different forms of training, namely voluntary wheel running and swimming, and compared the response at the morphological, myocellular and molecular levels. We found that both regimes normalized changes of myostatin deficiency and restored muscle function. We showed that both exercise training regimes increased muscle capillary density and the expression of Ucp3, Cpt1α, Pdk4 and Errγ, key markers for oxidative metabolism. Cross-sectional area of hypertrophic myofibres from MSTN(-/-) mice decreased towards wild-type values in response to exercise and, in this context, Bnip3, a key autophagy-related gene, was upregulated. This reduction in myofibre size caused an increase of the nuclear-to-cytoplasmic ratio towards wild-type values. Importantly, both training regimes increased muscle force in MSTN(-/-) mice. We conclude that impaired skeletal muscle function in myostatin-deficient mice can be improved through endurance exercise-mediated remodelling of muscle fibre size and metabolic profile.


Assuntos
Hipertrofia/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Miostatina/deficiência , Condicionamento Físico Animal , Indutores da Angiogênese/metabolismo , Animais , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Citoplasma/metabolismo , Citoplasma/fisiologia , Tolerância ao Exercício , Glicólise , Hipertrofia/genética , Hipertrofia/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Miostatina/genética , Miostatina/metabolismo , Tamanho do Órgão , Oxirredução , Fenótipo , Ensino
18.
FASEB Bioadv ; 4(9): 602-618, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36089981

RESUMO

Obesity and type II diabetes are leading causes of peripheral arterial disease (PAD), which is characterized by vascular insufficiency and ischemic damage in the limb skeletal muscle. Glycemic control is not sufficient to prevent progression of PAD, and molecular targets that can promote muscle neo-angiogenesis in obesity and diabetes remain poorly defined. Here, we have investigated whether nuclear receptor estrogen-related receptor alpha (ERRα) can promote ischemic revascularization in the skeletal muscles of diet-induced obese (DIO) mice. Using muscle-specific ERRα transgenic mice, we found that ERRα overexpression promotes revascularization, marked by increased capillary staining and muscle perfusion in DIO mice after hindlimb ischemic injury. Furthermore, ERRα facilitates repair and restoration of skeletal muscle myofiber size after limb ischemia in DIO mice. The ameliorative effects of ERRα overexpression did not involve the prevention of weight gain, hyperglycemia or glucose/insulin intolerance, suggesting a direct role for ERRα in promoting angiogenesis. Interestingly, levels of endogenous ERRα protein are suppressed in the skeletal muscles of DIO mice compared to lean controls, coinciding with the suppression of angiogenic gene expression, and reduced AMPK signaling in the DIO skeletal muscles. Upon further investigating the link between AMPK and ERRα, we found that AMPK activation increases the expression and recruitment of ERRα protein to specific angiogenic gene promoters in muscle cells. Further, the induction of angiogenic factors by AMPK activators in muscle cells is blocked by repressing ERRα. In summary, our results identify an AMPK/ERRα-dependent angiogenic gene program in the skeletal muscle, which is repressed by DIO, and demonstrate that forced ERRα activation can promote ischemic revascularization and muscle recovery in obesity.

19.
Curr Sports Med Rep ; 9(4): 227-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20622541

RESUMO

Regular exercise promotes favorable structural and metabolic adaptations, especially in the skeletal muscle, to boost endurance and cardiovascular health. These changes are driven by a network of incompletely understood molecular pathways that trigger transcriptional remodeling of the skeletal muscle. In this article, we describe recent advances in the understanding of the key components of this circuitry [namely peroxisome proliferator activator receptor delta (PPARdelta), adenosine monophosphate (AMP)-activated protein kinase (AMPK), silent information regulator two protein 1 (SIRT1), and peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)] that govern aerobic transformation of the skeletal muscles. We also discuss recent discoveries that raise the possibility of synthetically mimicking exercise with pathway-specific drugs to improve aerobic capacity and, in turn, health.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Animais , Metabolismo Energético/fisiologia , Humanos , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiologia , Transdução de Sinais/fisiologia
20.
FASEB Bioadv ; 2(9): 538-553, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32923988

RESUMO

Skeletal muscle atrophy is debilitating consequence of a large number of chronic disease states, aging, and disuse conditions. Skeletal muscle mass is regulated through coordinated activation of a number of signaling cascades. Transforming growth factor-ß activated kinase 1 (TAK1) is a central kinase that mediates the activation of multiple signaling pathways in response to various growth factors, cytokines, and microbial products. Accumulating evidence suggests that TAK1 promotes skeletal muscle growth and essential for the maintenance of muscle mass in adults. Targeted inactivation of TAK1 leads to severe muscle wasting and kyphosis in mice. However, the mechanisms by which TAK1 prevents loss of muscle mass remain poorly understood. Through generation of inducible skeletal muscle-specific Tak1-knockout mice, we demonstrate that targeted ablation of TAK1 disrupts redox signaling leading to the accumulation of reactive oxygen species and loss of skeletal muscle mass and contractile function. Suppression of oxidative stress using Trolox improves muscle contractile function and inhibits the activation of catabolic signaling pathways in Tak1-deficient muscle. Moreover, Trolox inhibits the activation of ubiquitin-proteasome system and autophagy markers in skeletal muscle of Tak1-deficient mice. Furthermore, inhibition of oxidative stress using Trolox prevents the slow-to-fast type fiber transition and improves mitochondrial respiration in skeletal muscle of Tak1-deficient mice. Overall, our results demonstrate that TAK1 maintains skeletal muscle mass and health through redox homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA