Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pflugers Arch ; 476(1): 111-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922096

RESUMO

To evaluate the effect of decreased salivary secretion on taste preference, we investigated taste preference for five basic tastes by a 48 h two-bottle preference test using a mouse model (desalivated mice) that underwent surgical removal of three major salivary glands: the parotid, submandibular, and sublingual glands. In the desalivated mice, the avoidance behaviors for bitter and salty tastes and the attractive behaviors for sweet and umami tastes were significantly decreased. We confirmed that saliva is necessary to maintain normal taste preference. To estimate the cause of the preference changes, we investigated the effects of salivary gland removal on the expression of taste-related molecules in the taste buds. No apparent changes were observed in the expression levels or patterns of taste-related molecules after salivary gland removal. When the protein concentration and composition in the saliva were compared between the control and desalivated mice, the protein concentration decreased and its composition changed after major salivary gland removal. These results suggest that changes in protein concentration and composition in the saliva may be one of the factors responsible for the changes in taste preferences observed in the desalivated mice.


Assuntos
Papilas Gustativas , Paladar , Percepção Gustatória , Glândulas Salivares , Papilas Gustativas/metabolismo , Saliva/metabolismo , Glândula Submandibular
2.
Biosci Biotechnol Biochem ; 88(2): 203-205, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37947260

RESUMO

Licking behavior with various salts in transmembrane channel-like 4 (Tmc4) knockout (KO) mice was observed. In Tmc4 KO mice, a significant decrease in sensitivity to chloride salts, such as NaCl, KCl, and NH4Cl, was observed, while no significant decrease in sensitivity to Na-gluconate was observed. This finding suggests that TMC4 may be involved in the detection of chloride taste.


Assuntos
Cloretos , Sais , Animais , Camundongos , Amilorida , Camundongos Knockout , Cloreto de Potássio/farmacologia , Paladar
3.
Biosci Biotechnol Biochem ; 87(12): 1470-1477, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37715303

RESUMO

Neohesperidin dihydrochalcone (NHDC) is a sweetener, which interacts with the transmembrane domain (TMD) of the T1R3 subunit of the human sweet taste receptor. Although NHDC and a sweet taste inhibitor lactisole share similar structural motifs, they have opposite effects on the receptor. This study involved the creation of an NHDC-docked model of T1R3 TMD through mutational analyses followed by in silico simulations. When certain NHDC derivatives were docked to the model, His7345.44 was demonstrated to play a crucial role in activating T1R3 TMD. The NHDC-docked model was then compared with a lactisole-docked inactive form, several residues were characterized as important for the recognition of NHDC; however, most of them were distinct from those of lactisole. Residues such as His6413.33 and Gln7947.38 were found to be oriented differently. This study provides useful information that will facilitate the design of sweeteners and inhibitors that interact with T1R3 TMD.


Assuntos
Chalconas , Receptores Acoplados a Proteínas G , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Hesperidina/análogos & derivados , Chalconas/química , Simulação de Acoplamento Molecular , Humanos , Edulcorantes/química , Estrutura Molecular
4.
Biosci Biotechnol Biochem ; 86(10): 1431-1437, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35881472

RESUMO

The mouse bitter taste receptors (Tas2rs) that respond to resveratrol, a bitter-tasting polyphenolic compound, were identified. Among 35 members of the Tas2r family, Tas2r108, 109, 131, and 137 responded to resveratrol treatment. mRNA expression levels of Tas2r108 and Tas2r137 were higher than those of Tas2r109 and Tas2r131 in mouse circumvallate papillae, indicating that Tas2r108 and Tas2r137 may play important roles in detecting the bitterness of resveratrol in the oral cavity. The mRNA expression levels of Tas2r137 and Tas2r108 were also observed in several tissues, suggesting that Tas2r108 and Tas2r137 may also be involved in the physiological action of resveratrol.


Assuntos
Papilas Gustativas , Paladar , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Resveratrol/farmacologia
5.
Biochem Biophys Res Commun ; 573: 76-79, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411898

RESUMO

Nonsteroidal anti-inflammatory drugs, such as ibuprofen, are known to modify salty taste perception in humans. However, the underlying molecular mechanisms remain unknown. We investigated the inhibitory effect of ibuprofen on the NaCl stimulation of epithelium sodium channel (ENaC) and transmembrane channel-like 4 (TMC4), which are involved in salty taste detection. Although ibuprofen only minimally inhibited the response of the ENaC to NaCl, it significantly inhibited the TMC4 response to NaCl with an IC50 at 1.45 mM. These results suggest that ibuprofen interferes with detection of salty taste via inhibition of TMC4.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ibuprofeno/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Cloreto de Sódio/administração & dosagem , Administração Oral , Humanos , Proteínas de Membrana/metabolismo , Percepção Gustatória/efeitos dos fármacos
6.
Biosci Biotechnol Biochem ; 85(11): 2295-2299, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34468713

RESUMO

Human susceptibility to NaCl varies depending on temperature and pH, the molecular mechanisms of which remain unclear. The voltage-dependent chloride channel, transmembrane channel-like 4 (TMC4), is activated at approximately 40 °C and is suppressed at pH 5.5. As these are similar in character to human sensory evaluations, human TMC4 may be involved in human salt taste reception.


Assuntos
Temperatura
7.
Biochem Biophys Res Commun ; 533(4): 704-709, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33160623

RESUMO

Matured hop bitter acids (MHBA) are bitter acid oxides derived from hops, widely consumed as food ingredients to add bitterness and flavor in beers. Previous studies have suggested a potential gut-brain mechanism in which MHBA simulates enteroendocrine cells to produce cholecystokinin (CCK), a gastrointestinal hormone which activates autonomic nerves, resulting in body fat reduction and cognitive improvement; however, the MHBA recognition site on enteroendocrine cells has not been fully elucidated. In this study, we report that MHBA is recognized by specific human and mouse bitter taste receptors (human TAS2R1, 8, 10 and mouse Tas2r119, 130, 105) using a heterologous receptor expression system in human embryonic kidney 293T cells. In addition, knockdown of each of these receptors using siRNA transfection partially but significantly suppressed an MHBA-induced calcium response and CCK production in enteroendocrine cells. Furthermore, blocking one of the essential taste signaling components, transient receptor potential cation channel subfamily M member 5, remarkably inhibited the MHBA-induced calcium response and CCK production in enteroendocrine cells. Our results demonstrate that specific bitter taste receptor activation by MHBA drives downstream calcium response and CCK production in enteroendocrine cells. These findings reveal a mechanism by which food ingredients derived from hops in beer activate the gut-brain axis for the first time.


Assuntos
Cerveja/análise , Colecistocinina/metabolismo , Células Enteroendócrinas/metabolismo , Hormônios Gastrointestinais/metabolismo , Humulus/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Camundongos , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia , Paladar
8.
Chem Senses ; 45(8): 667-673, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832995

RESUMO

A sweet taste receptor is composed of heterodimeric G-protein-coupled receptors T1R2 and T1R3. Although there are many sweet tastants, only a few compounds have been reported as negative allosteric modulators (NAMs), such as lactisole, its structural derivative 2,4-DP, and gymnemic acid. In this study, candidates for NAMs of the sweet taste receptor were explored, focusing on the structural motif of lactisole. Ibuprofen, a nonsteroidal anti-inflammatory drug (NSAID), has an α-methylacetic acid moiety, and this structure is also shared by lactisole and 2,4-DP. When ibuprofen was applied together with 1 mM aspartame to the cells that stably expressed the sweet taste receptor, it inhibited the receptor activity in a dose-dependent manner. The IC50 value of ibuprofen against the human sweet taste receptor was calculated as approximately 12 µM, and it was almost equal to that of 2,4-DP, which is known as the most potent NAM for the receptor to date. On the other hand, when the inhibitory activities of other profens were examined, naproxen also showed relatively potent NAM activity against the receptor. The results from both mutant analysis for the transmembrane domain (TMD) of T1R3 and docking simulation strongly suggest that ibuprofen and naproxen interact with T1R3-TMD, similar to lactisole and 2,4-DP. However, although 2,4-DP and ibuprofen had almost the same inhibitory activities, these activities were acquired by filling different spaces of the ligand pocket of T1R3-TMD; this knowledge could lead to the rational design of a novel NAM against the sweet taste receptor.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ibuprofeno/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/química , Derivados de Benzeno/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Ibuprofeno/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Naproxeno/farmacologia
9.
Gerontology ; 66(3): 275-285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31968334

RESUMO

α-Glycerophosphocholine (GPC) is a natural source of choline. It reportedly prevents aging-related decline in cognitive function, but the underlying mechanism remains unclear. Although it is understood that aging influences taste sensitivity and energy regulation, whether GPC exerts antiaging effects on such phenomena requires further elucidation. Here, we used old C57BL/6J mice that were fed a GPC-containing diet, to investigate the molecular mechanisms underlying the prevention of a decline in cognitive function associated with aging and examine the beneficial effects of GPC intake on aging-related phenomena, such as taste sensitivity and energy regulation. We confirmed that GPC intake reduces the aging-related decline in the expression levels of genes related to long-term potentiation. Although we did not observe an improvement in aging-related decline in taste sensitivity, there was a notable improvement in the expression levels of ß-oxidation-associated genes in old mice. Our results suggest that the prevention of aging-related decline in cognitive function by GPC intake may be associated with the improvement of gene expression levels of long-term potentiation. Furthermore, GPC intake may positively influence lipid metabolism.


Assuntos
Cognição/efeitos dos fármacos , Glicerilfosforilcolina/metabolismo , Paladar/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Dieta , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Glicerilfosforilcolina/farmacologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Biosci Biotechnol Biochem ; 83(2): 243-250, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30343635

RESUMO

The epithelial sodium channel (ENaC) plays a pivotal role in sodium homeostasis, and the development of drugs that modulate ENaC activity is of great potential therapeutic relevance. We screened 6100 chemicals for their ability to activate sodium permeability of ENaC. We used a two-step strategy: a high throughput cell-based assay and an electrophysiological assay. Five compounds were identified showing common structural features including an indole or benzothiophene ring. ENaC consists of three subunits: α, ß, and γ. Changing the heteromeric combination of human and mouse ENaC αßγ subunits, we found that all five compounds activated the human ß subunit but not the mouse subunit. However, four of them exhibited lower activity when the human γ subunit was substituted by the mouse γ subunit. Our findings provide a structural basis for designing human ENaC activity modulators. Abbreviations: ENaC: Epithelial sodium channel; ΔRFU: delta relative fluorescence units; EC50: Half-maximal effective concentration; Emax: maximum effect value.


Assuntos
Agonistas do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Indóis/química , Tiofenos/química , Animais , Agonistas do Canal de Sódio Epitelial/química , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Camundongos
12.
Biochem Biophys Res Commun ; 503(4): 2301-2305, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29964016

RESUMO

We attempted to identify mouse bitter taste receptors, Tas2rs, that respond to tea catechins. Among representative tea catechins, avoidance behavior of mice to (-)-epicatechin gallate (ECg) was the strongest, followed by (-)-epigallocatechin gallate (EGCg). Therefore, we measured ECg response using Tas2rs-expressing cells. Among the 35 members of Tas2r family, Tas2r108, 110, 113, 125, and 144 responded to ECg. Among these receptors, Tas2r113 and 125 also responded to EGCg. Because the response profiles of Tas2r125 were consistent with the results of the behavior assays, it was considered that Tas2r125 functions as the main receptor for detecting bitterness of tea catechins in the oral cavity. To determine the involvement of Tas2rs in the physiological action of catechins, mRNA expression of 5 Tas2rs was investigated in various tissues. Because mRNA expression of Tas2r108 was observed in some tissues including the gastrointestinal tract, it may be envisaged that Tas2r108 plays a part in exerting the physiological action of ECg. Tas2r125 expression was not observed in any of the tested tissues except the circumvallate papillae. Therefore, Tas2r125 was considered to mainly function in the events of catechin reception in the oral cavity.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Catequina/fisiologia , Boca/química , Receptores de Superfície Celular/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Paladar , Chá/química , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Camundongos , Boca/efeitos dos fármacos , RNA Mensageiro/análise , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética
13.
Biosci Biotechnol Biochem ; 82(2): 200-206, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29327676

RESUMO

The functions of food have three categories: nutrition, palatability, and bioregulation. As the onset of lifestyle-related diseases has increased, many people have shown interest in functional foods that are beneficial to bioregulation. We believe that functional foods should be highly palatable for increased acceptance from consumers. In order to design functional foods with a high palatability, we have investigated about the palatability, especially in relation to the taste of food. In this review, we discuss (1) the identification of taste receptors that respond to functional food components; (2) an analysis of the peripheral taste transduction system; and (3) the investigation of the relationship between physiological functions and taste signals.


Assuntos
Alimento Funcional , Percepção Gustatória/efeitos dos fármacos , Animais , Alimento Funcional/análise , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Neurosci ; 35(26): 9717-29, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26134654

RESUMO

Taste perception begins in the oral cavity by interactions of taste stimuli with specific receptors. Specific subsets of taste receptor cells (TRCs) are activated upon tastant stimulation and transmit taste signals to afferent nerve fibers and ultimately to the brain. How specific TRCs impinge on the innervating nerves and how the activation of a subset of TRCs leads to the discrimination of tastants of different qualities and intensities is incompletely understood. To investigate the organization of taste circuits, we used gene targeting to express the transsynaptic tracer barley lectin (BL) in the gustatory system of mice. Because TRCs are not synaptically connected with the afferent nerve fibers, we first analyzed tracer production and transfer within the taste buds (TBs). Surprisingly, we found that BL is laterally transferred across all cell types in TBs of mice expressing the tracer under control of the endogenous Tas1r1 and Tas2r131 promotor, respectively. Furthermore, although we detected the BL tracer in both ganglia and brain, we also found local low-level Tas1r1 and Tas2r131 gene, and thus tracer expression in these tissues. Finally, we identified the Tas1r1 and Tas2r131-expressing cells in the peripheral and CNS using a binary genetic approach. Together, our data demonstrate that genetic transsynaptic tracing from bitter and umami receptor cells does not selectively label taste-specific neuronal circuits and reveal local taste receptor gene expression in the gustatory ganglia and the brain. SIGNIFICANCE STATEMENT: Previous papers described the organization of taste pathways in mice expressing a transsynaptic tracer from transgenes in bitter or sweet/umami-sensing taste receptor cells. However, reported results differ dramatically regarding the numbers of synapses crossed and the reduction of signal intensity after each transfer step. Nevertheless, all groups claimed this approach appropriate for quality-specific visualization of taste pathways. In the present study, we demonstrate that genetic transsynaptic tracing originating from umami and bitter taste receptor cells does not selectively label taste quality-specific neuronal circuits due to lateral transfer of the tracer in the taste bud and taste receptor expression in sensory ganglia and brain. Moreover, we visualized for the first time taste receptor-expressing cells in the PNS and CNS.


Assuntos
Encéfalo/citologia , Gânglios/citologia , Regulação da Expressão Gênica/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lectinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Fosfolipase C beta/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/citologia , Aglutininas do Germe de Trigo/metabolismo
15.
J Neurochem ; 133(6): 806-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25692331

RESUMO

Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Papilas Gustativas/metabolismo , Paladar/fisiologia , Animais , Exocitose/fisiologia , Hibridização In Situ , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/metabolismo
16.
J Biol Chem ; 288(52): 36863-77, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24214976

RESUMO

Umami taste perception in mammals is mediated by a heteromeric complex of two G-protein-coupled receptors, T1R1 and T1R3. T1R1/T1R3 exhibits species-dependent differences in ligand specificity; human T1R1/T1R3 specifically responds to L-Glu, whereas mouse T1R1/T1R3 responds more strongly to other L-amino acids than to L-Glu. The mechanism underlying this species difference remains unknown. In this study we analyzed chimeric human-mouse receptors and point mutants of T1R1/T1R3 and identified 12 key residues that modulate amino acid recognition in the human- and mouse-type responses in the extracellular Venus flytrap domain of T1R1. Molecular modeling revealed that the residues critical for human-type acidic amino acid recognition were located at the orthosteric ligand binding site. In contrast, all of the key residues for the mouse-type broad response were located at regions outside of both the orthosteric ligand binding site and the allosteric binding site for inosine-5'-monophosphate (IMP), a known natural umami taste enhancer. Site-directed mutagenesis demonstrated that the newly identified key residues for the mouse-type responses modulated receptor activity in a manner distinct from that of the allosteric modulation via IMP. Analyses of multiple point mutants suggested that the combination of two distinct determinants, amino acid selectivity at the orthosteric site and receptor activity modulation at the non-orthosteric sites, may mediate the ligand specificity of T1R1/T1R3. This hypothesis was supported by the results of studies using nonhuman primate T1R1 receptors. A complex molecular mechanism involving changes in the properties of both the orthosteric and non-orthosteric sites of T1R1 underlies the determination of ligand specificity in mammalian T1R1/T1R3.


Assuntos
Ligantes , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Haplorrinos , Humanos , Inosina Monofosfato/genética , Inosina Monofosfato/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Mutação Puntual , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Especificidade da Espécie
17.
Amino Acids ; 46(6): 1583-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24633359

RESUMO

L-Theanine is a unique amino acid present in green tea. It elicits umami taste and has a considerable effect on tea taste and quality. We investigated L-theanine activity on the T1R1 + T1R3 umami taste receptor. L-Theanine activated T1R1 + T1R3-expressing cells and showed a synergistic response with inosine 5'-monophosphate. The site-directed mutagenesis analysis revealed that L-theanine binds to L-amino acid binding site in the Venus flytrap domain of T1R1. This study shows that L-theanine elicits an umami taste via T1R1 + T1R3.


Assuntos
Glutamatos/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Paladar , Animais , Glutamatos/metabolismo , Células HEK293 , Humanos , Camundongos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética
18.
IBRO Neurosci Rep ; 16: 196-200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38328800

RESUMO

Generally, taste sensitivity is known to change with age. However, the molecular mechanisms underlying this phenomenon remain unclear. Mammalian taste buds are classified into type I, II, III, and IV cells; among them, type II and III cells have an important role in the taste detection process. We hypothesized that age-related changes in the proportion of taste cell types would be a factor in changes in taste sensitivity. To test this hypothesis, we compared the expression patterns of type II and III cell markers in taste buds obtained from the circumvallate papillae of young and old mice. Gustducin, SEMA3A, PLCß2, and CAR4 were used as type II and III cell markers, respectively. When we performed double-fluorescence staining using antibodies for these molecules, Gustducin and SEMA3A immune-positive cells were 22.7 ± 1.2% and 27.6 ± 0.9% in young mice and 22.0 ± 0.7% and 25.9 ± 1.1% in old mice, respectively. PLCß2 and CAR4 immune-positive cells were 30.3 ± 1.5% and 20.7 ± 1.3% in young mice and 29.1 ± 0.8% and 21.1 ± 1.2% in old mice, respectively. There were no significant differences in the percentage of immunopositive cells for all antibodies tested between young and old mice. These results suggest that the proportion of type II and III cells does not change with aging.

19.
Neuroreport ; 35(15): 987-991, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39166393

RESUMO

Aging generally affects food consumption and energy metabolism. Since the feeding center is located in the hypothalamus, it is a major target for understanding the mechanism of age-related changes in eating behavior and metabolism. To obtain insight into the age-related changes in gene expression in the hypothalamus, we investigated genes whose expression changes with age in the hypothalamus. A DNA microanalysis was performed using hypothalamus samples obtained from young (aged 24 weeks) and old male mice (aged 138 weeks). Gene Ontology (GO) analysis was performed using the identified differentially expressed genes. We observed that the expression of 377 probe sets was significantly altered with aging (177 were upregulated and 200 were downregulated in old mice). As a result of the GO analysis of these probe sets, 16 GO terms, including the neuropeptide signaling pathway, were obtained. Intriguingly, although the food intake in old mice was lower than that in young mice, we found that several neuropeptide genes, such as agouti-related neuropeptide ( Agrp ), neuropeptide Y ( Npy ), and pro-melanin-concentrating hormone ( Pmch ), all of which promote food intake, were upregulated in old mice. In conclusion, this suggests that the gene expression pattern in the hypothalamus is regulated to promote food intake.


Assuntos
Envelhecimento , Ingestão de Alimentos , Hipotálamo , Animais , Hipotálamo/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Masculino , Camundongos , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/genética , Expressão Gênica , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/genética , Camundongos Endogâmicos C57BL
20.
Biosci Biotechnol Biochem ; 77(9): 1981-3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24018685

RESUMO

Tea catechins have strong bitterness and influence the taste of tea. Among the 25 human bitter-taste receptors (TAS2Rs), we found that hTAS2R14 responded to catechins, in addition to hTAS2R39, a known catechin receptor. Although hTAS2R14 responded to (-)-epicatechin gallate and (-)-epigallocatechin gallate, it did not respond to (-)-epicatechin and (-)-epigallocatechin.


Assuntos
Catequina/análogos & derivados , Receptores Acoplados a Proteínas G/metabolismo , Cálcio/metabolismo , Catequina/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA