Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Genes Dev ; 23(19): 2294-306, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19762508

RESUMO

Mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (fALS). Recent evidence implicates adaptive responses to endoplasmic reticulum (ER) stress in the disease process via a pathway known as the unfolded protein response (UPR). Here, we investigated the contribution to fALS of X-box-binding protein-1 (XBP-1), a key UPR transcription factor that regulates genes involved in protein folding and quality control. Despite expectations that XBP-1 deficiency would enhance the pathogenesis of mutant SOD1, we observed a dramatic decrease in its toxicity due to an enhanced clearance of mutant SOD1 aggregates by macroautophagy, a cellular pathway involved in lysosome-mediated protein degradation. To validate these observations in vivo, we generated mutant SOD1 transgenic mice with specific deletion of XBP-1 in the nervous system. XBP-1-deficient mice were more resistant to developing disease, correlating with increased levels of autophagy in motoneurons and reduced accumulation of mutant SOD1 aggregates in the spinal cord. Post-mortem spinal cord samples from patients with sporadic ALS and fALS displayed a marked activation of both the UPR and autophagy. Our results reveal a new function of XBP-1 in the control of autophagy and indicate critical cross-talk between these two signaling pathways that can provide protection against neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Autofagia/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Sistema Nervoso/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Animais , Autofagia/genética , Proteínas de Ligação a DNA/genética , Endorribonucleases/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição de Fator Regulador X , Medula Espinal , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Regulação para Cima , Proteína 1 de Ligação a X-Box
4.
EMBO J ; 30(21): 4465-78, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21926971

RESUMO

Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes.


Assuntos
Autofagia/genética , Endorribonucleases/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/genética , Ácidos/metabolismo , Animais , Sobrevivência Celular/genética , Células Cultivadas , Drosophila/genética , Endorribonucleases/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Organismos Geneticamente Modificados , Fagossomos/genética , Fagossomos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Inanição/metabolismo , Vesículas Transportadoras/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38765532

RESUMO

Objective: To classify the bibliometric indicators of online scientific research on placentophagy. Methods: A bibliometric study was conducted to quantify the scientific production of authors and institutions with the aim of highlighting the growth and impact of these publications nationally and internationally. The Bradford Law, network maps, and textual statistics were used, with searches conducted in libraries and databases in October 2021. Results: The sample consisted of 64 articles, whose primary authors were associated with 49 institutions, and mostly with degrees in anthropology. The United States of America was the country that published the most papers on the theme, and most studies were reviews with individual production. Through the term analysis, it was found that the predominant themes regarding placentophagy were the following: Alternative therapy for women's health, methodologies used for research in this area, period of placenta ingestion (postpartum period), and its benefits. Conclusion: The bibliometric indicators found are essential for the development of future research.


Assuntos
Bibliometria , Placenta , Feminino , Humanos , Gravidez , Pesquisa Biomédica
6.
Autophagy ; : 1-16, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38873940

RESUMO

Mesenchymal stem cells (MSCs) are used in cell therapy; nonetheless, their application is limited by their poor survival after transplantation in a proinflammatory microenvironment. Macroautophagy/autophagy activation in MSCs constitutes a stress adaptation pathway, promoting cellular homeostasis. Our proteomics data indicate that RUBCNL/PACER (RUN and cysteine rich domain containing beclin 1 interacting protein like), a positive regulator of autophagy, is also involved in cell death. Hence, we screened MSC survival upon various cell death stimuli under loss or gain of function of RUBCNL. MSCs were protected from TNF (tumor necrosis factor)-induced regulated cell death when RUBCNL was expressed. TNF promotes inflammation by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We determine that MSCs succumb to RIPK1 kinase-dependent apoptosis upon TNF sensing and necroptosis when caspases are inactivated. We show that RUBCNL is a negative regulator of both RIPK1-dependent apoptosis and necroptosis. Furthermore, RUBCNL mutants that lose the ability to regulate autophagy, retain their function in negatively regulating cell death. We also found that RUBCNL forms a complex with RIPK1, which disassembles in response to TNF. In line with this finding, RUBCNL expression limits assembly of RIPK1-TNFRSF1A/TNFR1 complex I, suggesting that complex formation between RUBCNL and RIPK1 represses TNF signaling. These results provide new insights into the crosstalk between the RIPK1-mediated cell death and autophagy machineries and suggest that RUBCNL, due to its functional duality in autophagy and apoptosis/necroptosis, could be targeted to improve the therapeutic efficacy of MSCs. Abbreviations: BAF: bafilomycin A1; CASP3: caspase 3; Caspases: cysteine-aspartic proteases; cCASP3: cleaved CASP3; CQ: chloroquine; CHX: cycloheximide; cPARP: cleaved poly (ADP-ribose) polymerase; DEPs: differential expressed proteins; ETO: etoposide; MEF: mouse embryonic fibroblast; MLKL: mixed lineage kinase domain-like; MSC: mesenchymal stem cell; MTORC1: mechanistic target of rapamycin kinase complex 1; Nec1s: necrostatin 1s; NFKB/NF-kB: nuclear factor of kappa light polypeptide gene enhancer in B cells; PLA: proximity ligation assay; RCD: regulated cell death; RIPK1: receptor (TNFRSF)-interacting serine-threonine kinase 1; RIPK3: receptor-interacting serine-threonine kinase 3; RUBCNL/PACER: RUN and cysteine rich domain containing beclin 1 interacting protein like; siCtrl: small interfering RNA nonsense; siRNA: small interfering RNA; TdT: terminal deoxynucleotidyl transferase; Tm: tunicamycin; TNF: tumor necrosis factor; TNFRSF1A/TNFR1: tumor necrosis factor receptor superfamily, member 1a.

7.
BMC Biol ; 10: 78, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22999309

RESUMO

Most neurodegenerative diseases involve the accumulation of misfolded proteins in the nervous system. Impairment of protein degradation pathways such as autophagy is emerging as a consistent and transversal pathological phenomenon in neurodegenerative diseases, including Alzheimer's, Huntington's, and Parkinson's disease. Genetic inactivation of autophagy in mice has demonstrated a key role of the pathway in maintaining protein homeostasis in the brain, triggering massive neuronal loss and the accumulation of abnormal protein inclusions. However, the mechanism underlying neurodegeneration due to autophagy impairment remains elusive. A paper in Molecular Neurodegeneration from Abeliovich's group now suggests a role for phosphorylation of Tau and the activation of glycogen synthase kinase 3ß (GSK3ß) in driving neurodegeneration in autophagy-deficient neurons. We discuss the implications of this study for understanding the factors driving neurofibrillary tangle formation in Alzheimer's disease and tauopathies.


Assuntos
Autofagia/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Animais , Humanos , Camundongos
8.
Sci Rep ; 13(1): 17137, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816871

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by protein accumulation in the brain as a main neuropathological hallmark. Among them, Aß42 peptides tend to aggregate and create oligomers and plaques. Macroautophagy, a form of autophagy characterized by a double-membrane vesicle, plays a crucial role in maintaining neuronal homeostasis by degrading protein aggregates and dysfunctional organelles as a quality control process. Recently, DEF8, a relatively uncharacterized protein, has been proposed as a participant in vesicular traffic and autophagy pathways. We have reported increased DEF8 levels in lymphocytes from mild cognitive impairment (MCI) and early-stage AD patients and a neuronal profile in a murine transgenic AD model. Here, we analyzed DEF8 localization and levels in the postmortem frontal cortex of AD patients, finding increased levels compared to healthy controls. To evaluate the potential function of DEF8 in the nervous system, we performed an in silico assessment of its expression and network profiles, followed by an in vivo evaluation of a neuronal Def8 deficient model using a Drosophila melanogaster model of AD based on Aß42 expression. Our findings show that DEF8 is an essential protein for maintaining cellular homeostasis in the nervous system, and it is upregulated under stress conditions generated by Aß42 aggregation. This study suggests DEF8 as a novel actor in the physiopathology of AD, and its exploration may lead to new treatment avenues.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Autofagia/genética , Encéfalo/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fragmentos de Peptídeos/metabolismo
9.
Front Mol Neurosci ; 15: 805087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250476

RESUMO

Parkinson's disease (PD) is caused by the degeneration of dopaminergic neurons due to an accumulation of intraneuronal abnormal alpha-synuclein (α-syn) protein aggregates. It has been reported that the levels of exosomal α-syn of neuronal origin in plasma correlate significantly with motor dysfunction, highlighting the exosomes containing α-syn as a potential biomarker of PD. In addition, it has been found that the selective autophagy-lysosomal pathway (ALP) contributes to the secretion of misfolded proteins involved in neurodegenerative diseases. In this review, we describe the evidence that supports the relationship between the ALP and α-syn exosomal secretion on the PD progression and its implications in the diagnosis and progression of this pathology.

10.
Sci Rep ; 12(1): 2038, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132125

RESUMO

Insulin-like growth factor 2 (IGF2) and autophagy-related genes have been proposed as biomolecules of interest related to idiopathic Parkinson's disease (PD). The objective of this study was to determine the IGF2 and IGF1 levels in plasma and peripheral blood mononuclear cells (PBMCs) from patients with moderately advanced PD and explore the potential correlation with autophagy-related genes in the same blood samples. IGF1 and IGF2 levels in patients' plasma were measured by ELISA, and the IGF2 expression levels were determined by real-time PCR and Western blot in PBMCs. The expression of autophagy-related genes was evaluated by real-time PCR. The results show a significant decrease in IGF2 plasma levels in PD patients compared with a healthy control group. We also report a dramatic decrease in IGF2 mRNA and protein levels in PBMCs from PD patients. In addition, we observed a downregulation of key components of the initial stages of the autophagy process. Although IGF2 levels were not directly correlated with disease severity, we found a correlation between its levels and autophagy gene profile expression in a sex-dependent pattern from the same samples. To further explore this correlation, we treated mice macrophages cell culture with α-synuclein and IGF2. While α-synuclein treatment decreased levels Atg5, IGF2 treatment reverted these effects, increasing Atg5 and Beclin1 levels. Our results suggest a relationship between IGF2 levels and the autophagy process in PD and their potential application as multi-biomarkers to determine PD patients' stages of the disease.


Assuntos
Autofagia/genética , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Células Cultivadas , Humanos , Fator de Crescimento Insulin-Like II/farmacologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , alfa-Sinucleína/farmacologia
11.
Rev Esc Enferm USP ; 56: e20210515, 2022.
Artigo em Inglês, Português | MEDLINE | ID: mdl-36300661

RESUMO

OBJECTIVE: to synthesize the evidence available in the literature on the effects of integrative and complementary practices in nausea and vomiting treatment in pregnant women. METHOD: a systematic review, reported according to PRISMA and registered in PROSPERO. The search for studies was carried out in 11 databases. To assess risk of bias in randomized clinical trials, the Cochrane Collaboration Risk of Bias Tool (RoB 2) was used. RESULTS: the final sample consisted of 31 articles, divided into three categories: aromatherapy, phytotherapy and acupuncture. It was observed that aromatherapy with lemon essential oil, ginger capsules, pericardial 6 point acupressure were the interventions that proved to be effective. Less than half of studies reported adverse effects, with mild and transient symptoms predominating. Most articles were classified as "some concern" in risk of bias assessment. CONCLUSION: the three most effective interventions to control gestational nausea and vomiting were aromatherapy, herbal medicine and acupuncture, with significant results in the assessment of individual studies.


Assuntos
Antieméticos , Óleos Voláteis , Feminino , Gravidez , Humanos , Antieméticos/uso terapêutico , Gestantes , Cápsulas/uso terapêutico , Náusea/prevenção & controle , Vômito/prevenção & controle
12.
Complement Ther Clin Pract ; 48: 101578, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35405631

RESUMO

AIMS AND OBJECTIVES: To evaluate the effect of laser auriculotherapy on chronic spinal pain. It is a randomized controlled clinical trial. METHODS: Volunteers with chronic spinal pain underwent three evaluations: an initial evaluation, a final evaluation immediately after the last intervention session, and a 15-day follow-up. Pain intensity, nociceptive threshold in relation to mechanical stimulus, and degree of pain (the greatest and least pain) in the last seven days were the assessed variables. The experimental group (EG, n = 24) underwent 10 sessions of laser auriculotherapy twice a week, while the control group (CG, n = 23) did not receive any intervention. RESULTS: The EG showed great clinical improvement in relation to the variable pain intensity between pre- and post-interventions (65.2%) and pre-intervention and follow-up (58.62%) compared to the CG. There was a significant increase in the nociceptive threshold for the EG. In contrast, the CG showed a significant reduction in the nociceptive threshold. The intergroup analysis indicated an improvement in pain intensity for the EG (0.006). This result remained at the follow-up (0.012). The nociceptive threshold increased over time for the EG (0.016). In contrast, the CG showed a reduction in this variable with a significant difference over time (<0.001). CONCLUSION: The results of this clinical trial suggest that the proposed intervention may be effective in reducing pain intensity and increasing the nociceptive threshold. The effect of the intervention remained 15 days after the end of the treatment, when the volunteers were re-evaluated.


Assuntos
Auriculoterapia , Dor Crônica , Auriculoterapia/métodos , Dor Crônica/terapia , Humanos , Lasers , Medição da Dor , Resultado do Tratamento
13.
Cells ; 11(12)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740989

RESUMO

Alzheimer's disease (AD) is the most prevalent age-associated neurodegenerative disease. A decrease in autophagy during aging contributes to brain disorders by accumulating potentially toxic substrates in neurons. Rubicon is a well-established inhibitor of autophagy in all cells. However, Rubicon participates in different pathways depending on cell type, and little information is currently available on neuronal Rubicon's role in the AD context. Here, we investigated the cell-specific expression of Rubicon in postmortem brain samples from AD patients and 5xFAD mice and its impact on amyloid ß burden in vivo and neuroblastoma cells. Further, we assessed Rubicon levels in human-induced pluripotent stem cells (hiPSCs), derived from early-to-moderate AD and in postmortem samples from severe AD patients. We found increased Rubicon levels in AD-hiPSCs and postmortem samples and a notable Rubicon localization in neurons. In AD transgenic mice lacking Rubicon, we observed intensified amyloid ß burden in the hippocampus and decreased Pacer and p62 levels. In APP-expressing neuroblastoma cells, increased APP/amyloid ß secretion in the medium was found when Rubicon was absent, which was not observed in cells depleted of Atg5, essential for autophagy, or Rab27a, required for exosome secretion. Our results propose an uncharacterized role of Rubicon on APP/amyloid ß homeostasis, in which neuronal Rubicon is a repressor of APP/amyloid ß secretion, defining a new way to target AD and other similar diseases therapeutically.


Assuntos
Doença de Alzheimer , Proteínas Relacionadas à Autofagia , Neuroblastoma , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
14.
Neurochem Res ; 36(5): 793-800, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21253855

RESUMO

This study was undertaken to evaluate the effects of chronic variate stress and lithium treatment on glutamatergic activity and neuronal vulnerability of rat hippocampus. Male Wistar rats were simultaneously treated with lithium and submitted to a chronic variate stress protocol during 40 days, and afterwards the hippocampal glutamatergic uptake and release, measured in slices and synaptosomes, were evaluated. We observed an increased synaptosomal [(3)H]glutamate uptake and an increase in [(3)H]glutamate stimulated release in hippocampus of lithium-treated rats. Chronic stress increased basal [(3)H]glutamate release by synaptosomes, and decreased [(3)H]glutamate uptake in hippocampal slices. When evaluating cellular vulnerability, both stress and lithium increased cellular death after oxygen and glucose deprivation (OGD). We suggest that the manipulation of glutamatergic activity induced by stress may be in part responsible for the neuroendangerment observed after stress exposure, and that, in spite of the described neuroprotective effects of lithium, it increased the neuronal vulnerability after OGD.


Assuntos
Morte Celular/efeitos dos fármacos , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipóxia/metabolismo , Compostos de Lítio/farmacologia , Estresse Fisiológico , Animais , Doença Crônica , Hipocampo/enzimologia , Hipocampo/metabolismo , Hipocampo/patologia , L-Lactato Desidrogenase/metabolismo , Masculino , Necrose , Ratos , Ratos Wistar
15.
J Alzheimers Dis ; 82(s1): S163-S178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33612542

RESUMO

BACKGROUND: Disturbances in the autophagy/endolysosomal systems are proposed as early signatures of Alzheimer's disease (AD). However, few studies are available concerning autophagy gene expression in AD patients. OBJECTIVE: To explore the differential expression of classical genes involved in the autophagy pathway, among them a less characterized one, DEF8 (Differentially expressed in FDCP 8), initially considered a Rubicon family member, in peripheralblood mononuclear cells (PBMCs) from individuals with mild cognitive impairment (MCI) and probable AD (pAD) and correlate the results with the expression of DEF8 in the brain of 5xFAD mice. METHOD: By real-time PCR and flow cytometry, we evaluated autophagy genes levels in PBMCs from MCI and pAD patients. We evaluated DEF8 levels and its localization in brain samples of the 5xFAD mice by real-time PCR, western blot, and immunofluorescence. RESULTS: Transcriptional levels of DEF8 were significantly reduced in PBMCs of MCI and pAD patients compared with healthy donors, correlating with the MoCA and MoCA-MIS cognitive tests scores. DEF8 protein levels were increased in lymphocytes from MCI but not pAD, compared to controls. In the case of brain samples from 5xFAD mice, we observed a reduced mRNA expression and augmented protein levels in 5xFAD compared to age-matched wild-type mice. DEF8 presented a neuronal localization. CONCLUSION: DEF8, a protein proposed to act at the final step of the autophagy/endolysosomal pathway, is differentially expressed in PBMCs of MCI and pAD and neurons of 5xFAD mice. These results suggest a potential role for DEF8 in the pathophysiology of AD.


Assuntos
Doença de Alzheimer/metabolismo , Autofagia/fisiologia , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
16.
Cells ; 9(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046060

RESUMO

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder that progressively affects motor neurons in the brain and spinal cord. Due to the biological complexity of the disease, its etiology remains unknown. Several cellular mechanisms involved in the neurodegenerative process in ALS have been found, including the loss of RNA and protein homeostasis, as well as mitochondrial dysfunction. Insoluble protein aggregates, damaged mitochondria, and stress granules, which contain RNA and protein components, are recognized and degraded by the autophagy machinery in a process known as selective autophagy. Autophagy is a highly dynamic process whose dysregulation has now been associated with neurodegenerative diseases, including ALS, by numerous studies. In ALS, the autophagy process has been found deregulated in both familial and sporadic cases of the disease. Likewise, mutations in genes coding for proteins involved in the autophagy machinery have been reported in ALS patients, including selective autophagy receptors. In this review, we focus on the role of selective autophagy in ALS pathology.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Autofagia , Esclerose Lateral Amiotrófica/terapia , Animais , Humanos , Modelos Biológicos , Transdução de Sinais
17.
Aging (Albany NY) ; 12(1): 1011-1033, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918411

RESUMO

Alzheimer's disease (AD) is the most prevalent type of dementia. Down syndrome (DS) is the leading genetic risk factor for Early-Onset AD, prematurely presenting the classic pathological features of the brain with AD. Augmented gene dosage, including the APP gene, could partially cause this predisposition. Recent works have revealed that alterations in chromosome location due to the extra Chromosome 21, as well as epigenetic modifications, could promote changes in gene expression other than those from Chromosome 21. As a result, similar pathological features and cellular dysfunctions in DS and AD, including impaired autophagy, lysosomal activity, and mitochondrial dysfunction, could be controlled beyond APP overexpression. In this review, we highlight some recent data regarding the origin of the shared features between DS and AD and explore the mechanisms concerning cognitive deficiencies in DS associated with dementia, which could shed some light into the search for new therapeutic targets for AD treatment.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Suscetibilidade a Doenças , Síndrome de Down/etiologia , Síndrome de Down/metabolismo , Doença de Alzheimer/patologia , Animais , Autofagia , Síndrome de Down/patologia , Epigênese Genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Estresse Oxidativo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Proteólise , RNA não Traduzido/genética , Transdução de Sinais
18.
Rev. bras. ginecol. obstet ; 46: e, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1559565

RESUMO

Abstract Objective: To classify the bibliometric indicators of online scientific research on placentophagy. Methods: A bibliometric study was conducted to quantify the scientific production of authors and institutions with the aim of highlighting the growth and impact of these publications nationally and internationally. The Bradford Law, network maps, and textual statistics were used, with searches conducted in libraries and databases in October 2021. Results: The sample consisted of 64 articles, whose primary authors were associated with 49 institutions, and mostly with degrees in anthropology. The United States of America was the country that published the most papers on the theme, and most studies were reviews with individual production. Through the term analysis, it was found that the predominant themes regarding placentophagy were the following: Alternative therapy for women's health, methodologies used for research in this area, period of placenta ingestion (postpartum period), and its benefits. Conclusion: The bibliometric indicators found are essential for the development of future research.

19.
Neurotoxicology ; 29(6): 1136-40, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18590764

RESUMO

Boldine is one of the most potent natural antioxidants and displays some important pharmacological activities, such as cytoprotective and anti-inflammatory activities, which may arise from its free radical scavenging properties. Given that the pathogenesis of brain ischemia/reperfusion has been associated with an excessive generation of oxygen free radicals, the aim of this study was to evaluate the neuroproperties of boldine using hippocampal slices from Wistar rats exposed to oxygen and glucose deprivation (OGD), followed by reoxygenation, to mimic an ischemic condition. The OGD ischemic condition significantly impaired cellular viability, increased lactate dehydrogenase (LDH) leakage and increased free radical generation. In non-OGD slices, incubation with 100microM boldine significantly increased LDH released into incubation media and decreased mitochondrial activity, suggesting an increase of tissue damage caused by boldine. However, slices incubated with 10microM boldine during and after OGD exposure had significantly increased cellular viability with no effect on cell damage. Total reactive antioxidant potential (TRAP) levels measured for this alkaloid showed an antioxidant potential three times higher than Trolox, which acts as a peroxyl radical scavenger. Moreover, boldine prevented the increase in lipoperoxidation levels induced by ischemia, but higher concentrations potentiated this parameter. These results confirm the potent antioxidant properties of this alkaloid, and add evidence to support the need for further investigations in order to confirm the potential pro-oxidant effects of boldine at higher doses.


Assuntos
Antioxidantes/farmacologia , Aporfinas/farmacologia , Glucose/deficiência , Hipocampo/efeitos dos fármacos , Hipóxia/patologia , Análise de Variância , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Subunidade 1 do Complexo Mediador , Oxigênio/administração & dosagem , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Transcrição/metabolismo
20.
Autophagy ; 14(4): 733-737, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29388464

RESUMO

In recent years, the role of autophagy in the pathogenesis of most neurodegenerative diseases has transitioned into a limbo of protective or detrimental effects. Genetic evidence indicates that mutations in autophagy-regulatory genes can result in the occurrence of amyotrophic lateral sclerosis (ALS), suggesting a physiological role of the pathway to motoneuron function. However, experimental manipulation of autophagy in ALS models led to conflicting results depending on the intervention strategy and the disease model used. A recent work by the Maniatis group systematically explored the role of cell-specific autophagy in motoneurons at different disease stages, revealing surprising and unexpected findings. Autophagy activity at early stages may contribute to maintaining the structure and function of neuromuscular junctions, whereas at later steps of the disease it has a pathogenic activity possibly involving cell-nonautonomous mechanisms related to glial activation. This new study adds a new layer of complexity in the field, suggesting an intricate interplay between proteostasis alterations, the time-differential function of autophagy in neurons, and muscle innervation in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Autofagia/fisiologia , Neurônios Motores/patologia , Junção Neuromuscular/metabolismo , Animais , Autofagia/genética , Modelos Animais de Doenças , Humanos , Neurônios Motores/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA