RESUMO
Bacteriophages have been used in phage therapy for the treatment of bacterial infections. They are biological agents that used for management of diseases caused by resistant bacteria. As compared to antibiotics, phages can kill bacteria specifically. It requires more awareness about phage-host interactions by exploring new phages. Escherichia coli (E. coli) is a conditional pathogen and cause infections like pneumonia and diarrhea in hospitalized patients. In the current research work, a virus IME178, a novel strain, was extracted from the sewage of hospital against the clinical E. coli of multidrug resistant nature. Genomic characterization and transmission electron microscopy have exhibited relation of phage to the Tequintavirus genus, Demerecviridae family. The Phage IME178's double-stranded DNA genome was 108588 bp long, with a GC content of 39%. The phage genome transcribes 155 open reading frames, 72 are hypothetical proteins, 81 have putative functions assigned to them, and two are unknown to any database. A total number of 19 tRNA genes were found in the genome of this phage. There were no genes associated with virulence or drug resistance in the phage genome. According to a comparative genomic analysis, the genomic sequence of phage IME178 is 91% identical to E. coli phage phiLLS (NC 047822.1). The phage's host range and one-step growth curve were also estimated. As per genomic and bioinformatics analysis findings, Phage IME178, a propitious biological agent that infects E. coli and have the potential to use in phage therapies.
Assuntos
Bacteriófagos , Siphoviridae , Humanos , Bacteriófagos/genética , Escherichia coli/genética , Genoma Viral , GenômicaRESUMO
Major depressive disorder (MDD) is a neuropsychiatric disorder, which remains challenging to diagnose and manage due to its complex endophenotype. In this aspect, circulatory microRNAs (cimiRNAs) offer great potential as biomarkers and may provide new insights for MDD diagnosis. Therefore, we systemically reviewed the literature to explore various cimiRNAs contributing to MDD diagnosis and underlying molecular pathways. A comprehensive literature survey was conducted, employing four databases from 2012 to January 2021. Out of 1004 records, 157 reports were accessed for eligibility criteria, and 32 reports meeting our inclusion criteria were considered for in-silico analysis. This study identified 99 dysregulated cimiRNAs in MDD patients, out of which 20 cimiRNAs found in multiple reports were selected for in-silico analysis. KEGG pathway analysis indicated activation of ALS, MAPK, p53, and P13K-Akt signaling pathways, while gene ontology analysis demonstrated that most protein targets were associated with transcription. In addition, chromosomal location analysis showed clustering of dysregulated cimiRNAs at proximity 3p22-p21, 9q22.32, and 17q11.2, proposing their coregulation with specific transcription factors primarily involved in MDD physiology. Further analysis of transcription factor sites revealed the existence of HIF-1, REST, and TAL1 in most cimiRNAs. These transcription factors are proposed to target genes linked with MDD, hypothesizing that first-wave cimiRNA dysregulation may trigger the second wave of transcription-wide changes, altering the protein expressions of MDD-affected cells. Overall, this systematic review presented a list of dysregulated cimiRNAs in MDD, notably miR-24-3p, let 7a-5p, miR-26a-5p, miR135a, miR-425-3p, miR-132, miR-124 and miR-16-5p as the most prominent cimiRNAs. However, various constraints did not permit us to make firm conclusions on the clinical significance of these cimiRNAs, suggesting the need for more research on single blood compartment to identify the biomarker potential of consistently dysregulated cimiRNAs in MDD, as well as the therapeutic implications of these in-silico insights.
Assuntos
MicroRNA Circulante/genética , Transtorno Depressivo Maior/genética , Biomarcadores/sangue , MicroRNA Circulante/análise , Depressão/genética , Transtorno Depressivo Maior/terapia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Transcriptoma/genéticaRESUMO
Xanthomonas oryzae pv. oryzae is a bacterial pathogen that gives rise to diseases in rice all over the world. A bacteriophage infecting this bacterium was isolated from rice fields in China. Here, we report the complete genome sequence of this phage, which has a linear dsDNA genome of 309,023 bp and a G + C content of 42.43%. It contains 401 open reading frames and encodes 28 tRNAs. It belongs to the family Myoviridae and has a broad host range, making it a possible candidate for phage therapy.
Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Xanthomonas/virologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Composição de Bases , Sequência de Bases , DNA Viral/genética , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Fases de Leitura Aberta , Oryza/microbiologia , Doenças das Plantas/microbiologia , RNA de Transferência/genética , Análise de Sequência de DNA , Homologia de Sequência , Microbiologia do SoloRESUMO
Xanthomonas oryzae pv. oryzae (X. oryzae) is a bacterial pathovar of rice diseases all over the world. Owing to emerging antibacterial resistance, phage therapies have gained significant attention to treat various bacterial infections. Nevertheless, comprehensive research is needed for their use as a safe biocontrol agent. In this study, isolation and characterization of a novel phage Xoo-sp15, that infects X. oryzae was ascertained through experimental and bioinformatics analyses to determine its virulent potency and reliability. High throughput sequencing demonstrated that Xoo-sp15 has a dsDNA genome with a total size of 157,091 bp and 39.9% GC content lower than its host (63.6%). Morphological and phylogenetic analyses characterized it as a new member of the Bastille-like group within the family Herelleviridae. In silico analysis revealed that it contains 229 open reading frames and 16 tRNAs. Additionally, this novel phage does not contain any resistant determinants and can infect nine X. oryzae strains. Therefore, Xoo-sp15 has the potential to serve as a novel candidate for phage therapy.
Assuntos
Bacteriófagos , Oryza , Xanthomonas , Bacteriófagos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/genética , Filogenia , Doenças das Plantas , Reprodutibilidade dos Testes , Xanthomonas/genéticaRESUMO
Escherichia coli is a pathogenic bacterium that is widely distributed and can lead to serious illnesses in both humans and animals. As there is rising incidence of multidrug resistance among these bacteria, it has become imperative to discover alternative therapies beyond antibiotics to effectively treat such infections. Bacteriophage (phage) therapy has the potential to treat infections caused by E. coli, as phages contain enzymes that can cause lysis or destruction of bacterial cells. Simultaneously, the easy accessibility and cost-effectiveness of next-generation sequencing technologies have led to the accumulation of a vast amount of phage sequence data. Here, phages IME177 and IME267 were isolated from sewage water of a hospital in China. Modern phylogenetic approaches and key findings from the genomic analysis revealed that phages IME177 and IME267 are classified as members of the Kayfunavirus genus, Autographiviridae family, and a newly proposed Suseptimavirus genus under subfamily Gordonclarkvirinae, respectively. Further, the Kuravirus genus reshaped into three different genera: Kuravirus, Nieuwekanaalvirus, and Suspeptimavirus, which are classified together under a higher taxonomic rank (subfamily) named Gordonclarkvirinae. No genes related to virulence were detected in the genomes of the phages IME177 and IME267. Both phages exhibited a high degree of resilience to a wide range of conditions, including pH, temperature, exposure to chloroform, and UV radiation. Phages IME177 and IME267 are promising biological agents that can infect E. coli, making them suitable candidates for use in phage therapies.IMPORTANCEBiological and taxonomic characterization of phages is essential for facilitating the development of effective strategies for phage therapy and disease control. Escherichia coli phages are incredibly diverse, and their isolation and classification help us understand the scope and nature of this diversity. By identifying new phages and grouping them into families, we can better understand the genetic and structural variations between phages and how they affect their infectivity and interactions with bacteria. Overall, the isolation and classification of E. coli phages have broad implications for both basic and applied research, clinical practice, and public health.
RESUMO
As antimicrobial resistance continues to escalate, the exploration of alternative approaches to safeguard food safety becomes more crucial than ever. Phage endolysins are enzymes derived from phages that possess the ability to break down bacterial cell walls. They have emerged as promising antibacterial agents suitable for integration into food processing systems. Their application as food preservatives can effectively regulate pathogens, thus contributing to an overall improvement in food safety. This review summarizes the latest techniques considering endolysins' potential for food safety. These techniques include native and engineered endolysins for controlling bacterial contamination at different points within the food production chain. However, we find that characterizing endolysins through in vitro methods proves to be time consuming and resource intensive. Alternatively, the emergence of advanced high-throughput sequencing technology necessitates the creation of a robust computational framework to efficiently characterize recently identified endolysins, paving the way for future research. Machine learning encompasses potent tools capable of analyzing intricate datasets and pattern recognition. This study briefly reviewed the use of these industry 4.0 technologies for advancing the research in food industry. We aimed to provide current status of endolysins in food industry and new insights by implementing these industry 4.0 strategies revolutionizes endolysin development. It will enhance food safety, customization, efficiency, transparency, and collaboration while reducing regulatory hurdles and ensuring timely product availability.
Assuntos
Bacteriófagos , Endopeptidases , Antibacterianos , Inocuidade dos AlimentosRESUMO
As of 29 July 2022, there had been a cumulative 572,239,451 confirmed cases of COVID-19 worldwide, including 6,390,401 fatalities. COVID-19 patients with severe symptoms are usually treated with a combination of virus- and drug-induced immuno-suppression medicines. Critical clinical complications of the respiratory system due to secondary bacterial infections (SBIs) could be the reason for the high mortality rate in COVID-19 patients. Unfortunately, antimicrobial resistance is increasing daily, and only a few options are available in our antimicrobial armory. Hence, alternative therapeutic options such as enzymes derived from bacteriophages can be considered for treating SBIs in COVID-19 patients. In particular, phage-derived depolymerases have high antivirulent potency that can efficiently degrade bacterial capsular polysaccharides, lipopolysaccharides, and exopolysaccharides. They have emerged as a promising class of new antibiotics and their therapeutic role for bacterial infections is already confirmed in animal models. This review provides an overview of the rising incidence of SBIs among COVID-19 patients. We present a practicable novel workflow for phage-derived depolymerases that can easily be adapted for treating SBIs in COVID-19 patients.
RESUMO
Phage vB_CpeS-17DYC was isolated from wastewater from a poultry market using Clostridium perfringens strain DYC. The vB_CpeS-17DYC genome is 39,184 bp long, with 65 open reading frames and a GC content of 30.6%. It shared 93.95% nucleotide identity, with 70% query coverage, with Clostridium phage phiCP13O (GenBank accession number NC_019506.1). Virulence factor genes were not found in the vB_CpeS-17DYC genome.
RESUMO
Introduction: Klebsiella pneumoniae, a multidrug resistant bacterium, that causes nosocomial infections including septicemia, pneumonia etc. Bacteriophages are potential antimicrobial agents for the treatment of antibiotic resistant bacteria. Methods and Results: In this study, a novel bacteriophage IME268 was isolated from hospital sewage against clinical multi-drug resistant Klebsiella pneumoniae. Transmission electron microscopy and genomic characterization of this phage exhibited it belongs to the Webervirus genus, Drexlerviridae family. Phage IME268 possessed a double-stranded DNA genome composed of 49,552bp with a GC content of 50.5%. The phage genome encodes 77 open reading frames, out of 44 are hypothetical proteins while 33 had assigned putative functions. No tRNA, virulence related or antibiotic resistance genes were found in phage genome. Comparative genomic analysis showed that phage IME268 has 95% identity with 87% query cover with other phages in NCBI database. Multiplicity of infection, one step growth curve and host range of phage were also measured. Conclusion: According to findings, Phage IME268 is a promising biological agent that infects Klebsiella pneumoniae and can be used in future phage therapies.
RESUMO
BACKGROUND: Hepatitis C virus (HCV) is an enveloped and positive-stranded RNA virus that is a major causative agent of chronic liver diseases worldwide. HCV has become the main cause of liver transplantations and there is no effective drug for all hepatitis genotypes. Elucidation of the life cycle and non-structural proteins of HCV, involved in viral replication, are attractive targets for the development of antiviral drugs.. METHODS: In this work, pharmacoinformatics approaches coupled with docking analyses were applied on HCV non-structural proteins to identify the novel potential hits and HCV drugs. Molecular docking analyses were carried out on HCV-approved drugs, followed by the ligandbased pharmacophore generation to screen the antiviral libraries for novel potential hits. RESULTS: Virtual screening technique has top-ranked five novel compounds (ZINC00607900, ZINC03635748, ZINC03875543, ZINC04097464, and ZINC12503102) along with their least binding energies (-8.0 kcal/mol, -6.1 kcal/mol, -7.5 kcal/mol, -7.4 kcal/mol, and -7.3 kcal/mol, respectively) and stability with the non-structural proteins target. CONCLUSION: These promising hits exhibited better absorption and ADMET properties as compared to the selected drug molecules. These potential compounds extracted from in silico approach may be significant in drug design and development against Hepatitis and other liver diseases.
Assuntos
Hepacivirus , Hepatite C , Animais , Antivirais/química , Hepatite C/tratamento farmacológico , Ligantes , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismoRESUMO
Mahonia bealei is one of the important members of the genus Mahonia and Traditional Chinese Medicine (TCM). Several compounds isolated from this plant have exhibited useful biological activities. Polysaccharides, an important biomacromolecule have been underexplored in case of M. bealei. In this study, hot water extraction and ethanol precipitation were used for the extraction of polysaccharides from the stem of M. bealei, and then extract was purified using ultrafiltration membrane at 50,000 Da cut off value. Characterization of the purified M. bealei polysaccharide (MBP) was performed using Fourier Transform Infrared Spectroscopy (FT-IR), along with Scanning Electron Microscopy (SEM), X-ray crystallography XRD analysis and Thermal gravimetric analysis (TGA). The purified polysaccharide MBP was tested for antioxidant potential by determining its reducing power, besides determining the DPPH, ABTS, superoxide radical, and hydroxyl radical scavenging along with ferrous ion chelating activities. An increased antioxidant activity of the polysaccharide was reported with increase in concentration (0.5 to 5 mg/ml) for all the parameters. Antimicrobial potential was determined against gram positive and gram-negative bacteria. 20 µg/ml MBP was found appropriate with 12 h incubation period against Escherichia coli and Bacillus subtilis bacteria. We conclude that polysaccharides from M. bealei possess potential ability of biological importance; however, more studies are required for elucidation of their structure and useful activities.
Assuntos
Berberis , Mahonia , Antioxidantes/química , Sequestradores de Radicais Livres , Mahonia/química , Polissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , ÁguaRESUMO
Foodborne diseases have become a serious havoc, where antimicrobial resistance is throwing significant challenges on daily basis. With the increase of drug-resistant bacteria and food-borne infection associated with Vibrio parahaemolyticus, new and effective strategies were needed to control the emergence of vibriosis. Lytic bacteriophages come up as a promising way to resist the pathogenic population in various applications. In this study, a V. parahaemolyticus specific phage vB_VpS_PG28 was isolated from sewage in the seafood market. Results showed vB_VpS_PG28, is strictly a lytic bacteriophage and has a relatively large burst size of 103 plaque-forming units per infected cell. Comparative genomic and bioinformatic analyses proved that vB_VpS_PG28 is a new bacteriophage that had a homologous relation with Vibrio phages of family Siphoviridae, especially with phage VH2_2019, but transmission electron microscopy of vB_VpS_PG28 morphology characterized its morphology is similar to that of Myoviridae family. In silico analysis indicated that the vB_VpS_PG28 genome consists of 82712 bp (48.08% GC content) encoding 114 putative ORFs without tRNA,and any gene associated with resistance or virulence factors has not been found. The bacteriophage in the present study has shown significant outcomes in order to control bacterial growth under in vitro conditions. Thus, we are suggesting a beneficiary agent against foodborne pathogens. Further, to ensure the safe usage of phage oral toxicity testing is recommended.
Assuntos
Bacteriófagos , Vibrio parahaemolyticus , Animais , Crustáceos/genética , Genoma Viral , Filogenia , Alimentos Marinhos , Análise de Sequência , Vibrio parahaemolyticus/genéticaRESUMO
Klebsiella pneumoniae, a multidrug resistant bacterium that causes nosocomial infections including septicemia, pneumonia etc. Bacteriophages are potential antimicrobial agents for the treatment of antibiotic resistant bacteria. In this study, a novel bacteriophage IME184, was isolated from hospital sewage against clinical multi-drug resistant Klebsiella pneumoniae. Transmission electron microscopy and genomic characterization exhibited this phage belongs to the Molineuxvirinae genus, Autographiviridae family. Phage IME184 possessed a double-stranded DNA genome composed of 44,598 bp with a GC content of 50.3%. The phage genome encodes 57 open reading frames, out of 26 are hypothetical proteins while 31 had assigned putative functions. No tRNA, virulence related or antibiotic resistance genes were found in phage genome. Comparative genomic analysis showed that phage IME184 has 94% similarity with genomic sequence of Klebsiella phage K1-ULIP33 (MK380014.1). Multiplicity of infection, one step growth curve and host range of phage were also measured. According to findings, Phage IME184 is a promising biological agent that infects Klebsiella pneumoniae and can be used in future phage therapies.
Assuntos
Bacteriófagos , Caudovirales , Antibacterianos , Caudovirales/genética , Genoma Viral , Genômica , Klebsiella pneumoniae/genética , FilogeniaRESUMO
Hearing impairment (HI) is a heterogeneous condition that affects many individuals globally with different age groups. HI is a genetically and phenotypically heterogeneous disorder. Over the last several years, many genes/loci causing rare autosomal recessive and dominant forms of hearing impairments have been identified, involved in various aspects of ear development. In the current study, two affected individuals of a consanguineous family exhibiting autosomal recessive nonsyndromic hearing impairment (AR-NSHI) were clinically and genetically characterized. The single affected individual (IV-2) of the family was subjected to whole-exome sequencing (WES) accompanied by traditional Sanger sequencing. Clinical examinations using air conduction audiograms of both the affected individuals showed profound hearing loss across all frequencies. WES revealed a homozygous missense variant (c.44G>C) in the SIX5 gene located on chromosome 19q13.32. We report the first case of autosomal recessive NSHI due to a biallelic missense variant in the SIX5 gene. This report further supports the evidence that the SIX5 variant might cause profound HI and supports its vital role in auditory function. Identification of novel candidate genes might help in application of future gene therapy strategies that may be implemented for NSHI, such as gene replacement using cDNA, gene silencing using RNA interference, and gene editing using the CRISPR/Cas9 system.
Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Surdez/genética , Genes Recessivos , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Homozigoto , Humanos , Mutação , Mutação de Sentido Incorreto , LinhagemRESUMO
The bacteriophages have been explored at a huge scale as a model system for their applications in many biological-related fields. Jumbo phages with a large genome size from 200 to 500 kbp were not previously assigned a great value, and characterized by complex structures coupled with large virions with a wide variety of hosts. The origin of most of the jumbo phages was not well understood; however, many other prominent features have been discovered recently. In the current review, we strive to unearth the most advanced characteristics of jumbo phages, particularly their significance and structural organization that holds immense value to the viral life cycle. The unique characteristics of jumbo phages are the basis of variations in different types of phages concerning their organization at the genomic level, virion structure, evolution, and progeny propagation. The presence of tRNA and additional translation-related genes along with chaperonin genes mark the ability of these phages for being independent of host molecular machinery enabling them to have wide host options. A large number of jumbo phages have been isolated from various sources through advanced standard screening methods. The current review has summarized the available data on jumbo phages and discussed the genome orientation of jumbo phages, translational machinery, diversity and evolution of jumbo phages. In the studies conducted, jumbo phages possessed special additional genes that helps to reduce the dependence of jumbo phages on their hosts. Furthermore, their genomes might have evolved from smaller genome phages.
RESUMO
Bacterial biofilms can enhance bacteria's viability by providing resistance against antibiotics and conventional disinfectants. The existence of biofilm is a serious threat to human health, causing incalculable loss. Therefore, new strategies to deal with bacterial biofilms are needed. Bacteriophages are unique due to their activity on bacteria and do not pose a threat to humans. Consequently, they are considered safe alternatives to drugs for the treatment of bacterial diseases. They can effectively obliterate bacterial biofilms and have great potential in medical treatment, the food industry, and pollution control. There are intricate mechanisms of interaction between phages and biofilms. Biofilms may prevent the invasion of phages, and phages can kill bacteria for biofilm control purposes or influence the formation of biofilms. At present, there are various measures for the prevention and control of biofilms through phages, including the combined use of drugs and the application of phage cocktails. This article mainly reviews the function and formation process of bacterial biofilms, summarizes the different mechanisms between phages and biofilms, briefly explains the phage usage for the control of bacterial biofilms, and promotes phage application maintenance human health and the protection of the natural environment.
RESUMO
BACKGROUND: Multidrug-resistant plasmids carrying replication genes have been widely present in various strains of Klebsiella pneumoniae. RepA and repB1 were found in plasmids belong to the IncFIB, but their detailed structural and genomic characterization was not reported yet. This is the first study that delivers structural and functional insights of repA- and repB1-carrying IncFIB plasmids. METHODS: Klebsiella pneumoniae strains A1705, 911021, and 1642 were isolated from the human urine samples and bronchoalveolar fluids collected from different hospitals of China. Antibacterial susceptibility and plasmid transfer ability were tested to characterize the resistant phenotypes mediated by the pA1705-qnrS, p911021-tetA, and p1642-tetA. The complete nucleotide sequences of these plasmids were determined through high-throughput sequencing technology and comparative genomic analyses of plasmids belong to the same incompatibility group were executed to extract the genomic variations and features. RESULTS: The pA1705-qnrS, p911021-tetA, and p1642-tetA are defined as non-conjugative plasmids, having two replication genes, repA and repB1 associated with IncFIB family, and unknown incompatible group, respectively. Comparative genomic analysis revealed that relatively small backbones of IncFIB plasmids integrated massive accessory module at one "hotspot" that was located between orf312 and repB1. These IncFIB plasmids exhibited the distinct profiles of accessory modules including one or two multidrug-resistant regions, many complete and remnant mobile elements comprising integrons, transposons and insertion sequences. The clusters of resistant genes were recognized in this study against different classes of antibiotics including ß-lactam, phenicol, aminoglycoside, tetracycline, quinolone, trimethoprim, sulfonamide, tunicamycin, and macrolide. It has been observed that all resistant genes were located in multidrug resistance regions. CONCLUSION: It is concluded that multidrug-resistant repA and repB1-carrying IncFIB plasmids are a key source to mediate the resistance through mobile elements among Klebsiella pneumoniae. Current findings provide a deep understanding of horizontal gene transfer among plasmids of the IncFIB family via mobile elements that will be utilized in further in vitro studies.
RESUMO
A jumbo bacteriophage, Xoo-sp14, infecting Xanthomonas oryzae pv. oryzae was isolated from rice fields in China. Here, we report the complete genome sequence of this phage, revealing that it had a linear double-stranded DNA (dsDNA) molecule 232,104 bp long, with a G+C content of 58%. It has 251 annotated protein-coding sequences.
RESUMO
CpG islands are generally known as the epigenetic regulatory regions in accordance with histone modifications, methylation, and promoter activity. There is a significant need for the exact mapping of DNA methylation in CpG islands to understand the diverse biological functions. However, the precise identification of CpG islands from the whole genome through experimental and computational approaches is still challenging. Numerous computational methods are being developed to detect the CpG-enriched regions, effectively, to reduce the time and cost of the experiments. Here, we review some of the latest computational CpG detection methods that utilize clustering, patterns and physical-distance like parameters for CpG island detection. The comparative analyses of the methods relying on different principles and parameters allow prioritizing the algorithms for specific CpG associated datasets to achieve higher accuracy and sensitivity. A number of computational tools based on the window, Hidden Markov Model, density and distance-/length-based algorithms are being applied on human or mammalian genomes for accurate CpG detection. Comparative analyses of CpG island detection algorithms facilitate to prefer the method according to the target genome and required parameters to attain higher accuracy, specificity, and performance. There is still a need for efficient computational CpG detection methods with lower false-positive results. This review provides a better understanding about the principles of tools that will assist to prioritize and develop the algorithms for accurate CpG islands detection.