Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928118

RESUMO

ß C-S lyases (ß-CSLs; EC 4.4.1.8) are enzymes catalyzing the dissociation of ß carbon-sulfur bonds of cysteine S-conjugates to produce odorant metabolites with a free thiol group. These enzymes are increasingly studied for their role in flavor generation in a variety of food products, whether these processes occur directly in plants, by microbial ß-CSLs during fermentation, or in the mouth under the action of the oral microbiota. Microbial ß-CSLs react with sulfur aroma precursors present in beverages, vegetables, fruits, or aromatic herbs like hop but also potentially with some precursors formed through Maillard reactions in cooked foods such as meat or coffee. ß-CSLs from microorganisms like yeasts and lactic acid bacteria have been studied for their role in the release of polyfunctional thiols in wine and beer during fermentation. In addition, ß-CSLs from microorganisms of the human oral cavity were shown to metabolize similar precursors and to produce aroma in the mouth with an impact on retro-olfaction. This review summarizes the current knowledge on ß-CSLs involved in flavor generation with a focus on enzymes from microbial species present either in the fermentative processes or in the oral cavity. This paper highlights the importance of this enzyme family in the food continuum, from production to consumption, and offers new perspectives concerning the utilization of ß-CSLs as a flavor enhancer.


Assuntos
Fermentação , Aromatizantes , Humanos , Aromatizantes/metabolismo , Liases de Carbono-Enxofre/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Paladar
2.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758482

RESUMO

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Assuntos
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Trametes/metabolismo , Glutationa Transferase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012481

RESUMO

The human sweet taste receptor is a heterodimeric receptor composed of two distinct G-protein-coupled receptors (GPCRs), TAS1R2 and TAS1R3. The TAS1R2 and TAS1R3 subunits are members of a small family of class C GPCRs whose members share the same architecture, comprising a Venus Flytrap (VFT) module linked to the seven transmembrane domains (TMDs) by a short cysteine-rich region (CRR). The VFT module of TAS1R2 contains the primary binding site for most of the sweet-tasting compounds, including natural sugars and artificial and natural sweeteners. However, cellular assays, molecular docking and site-directed mutagenesis studies have revealed that the VFT, CRR and TMD of TAS1R3 interact with some sweeteners, including the sweet-tasting protein brazzein. The aim of this study was to better understand the contribution of TAS1R2-VFT in the binding of sweet stimuli. To achieve this, we heterologously expressed human TAS1R2-VFT (hTAS1R2-VFT) in Escherichia coli. Circular dichroism spectroscopic studies revealed that hTAS1R2-VFT was properly folded with evidence of secondary structures. Using size-exclusion chromatography coupled with light scattering, we found that hTAS1R2-VFT behaves as a monomer. Ligand binding quantified by intrinsic tryptophan fluorescence showed that hTAS1R2-VFT is capable of binding sweet stimuli with Kd values, in agreement with physiological detection. Furthermore, we investigated whether the impact of point mutations, already shown to have deleterious effects on cellular assays, could impact the ability of hTAS1R2-VFT to bind sweet ligands. As expected, the ligand affinities of hTAS1R2-VFT were drastically reduced through the introduction of single amino acid substitutions (D278A and E382A) known to abolish the response of the full-length TAS1R2/TAS1R3 receptor. This study demonstrates the feasibility of producing milligram quantities of hTAS1R2-VFT to further characterize the mechanism of binding interaction and perform structural studies.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Ligantes , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Edulcorantes/farmacologia
4.
Int J Cancer ; 148(12): 3019-3031, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33506516

RESUMO

The presence of an inactivating heat shock protein 110 (HSP110) mutation in colorectal cancers has been correlated with an excellent prognosis and with the ability of HSP110 to favor the formation of tolerogenic (M2-like) macrophages. These clinical and experimental results suggest a potentially powerful new strategy against colorectal cancer: the inhibition of HSP110. In this work, as an alternative to neutralizing antibodies, Nanofitins (scaffold ~7 kDa proteins) targeting HSP110 were isolated from the screening of a synthetic Nanofitin library, and their capacity to bind (immunoprecipitation, biolayer interferometry) and to inhibit HSP110 was analyzed in vitro and in vivo. Three Nanofitins were found to inhibit HSP110 chaperone activity. Interestingly, they share a high degree of homology in their variable domain and target the peptide-binding domain of HSP110. In vitro, they inhibited the ability of HSP110 to favor M2-like macrophages. The Nanofitin with the highest affinity, A-C2, was studied in the CT26 colorectal cancer mice model. Our PET/scan experiments demonstrate that A-C2 may be localized within the tumor area, in accordance with the reported HSP110 abundance in the tumor microenvironment. A-C2 treatment reduced tumor growth and was associated with an increase in immune cells infiltrating the tumor and particularly cytotoxic macrophages. These results were confirmed in a chicken chorioallantoic membrane tumor model. Finally, we showed the complementarity between A-C2 and an anti-PD-L1 strategy in the in vivo and in ovo tumor models. Overall, Nanofitins appear to be promising new immunotherapeutic lead compounds.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Proteínas de Choque Térmico HSP110/antagonistas & inibidores , Macrófagos/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Biblioteca de Peptídeos , Tomografia por Emissão de Pósitrons , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Mol Life Sci ; 77(13): 2565-2577, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31564000

RESUMO

Odorant-binding proteins (OBPs) are small soluble proteins that are thought to transport hydrophobic odorants across the aqueous sensillar lymph to olfactory receptors. A recent study revealed that OBP28a, one of the most abundant Drosophila OBPs, is not required for odorant transport, but acts in buffering rapid odour variation in the odorant environment. To further unravel and decipher its functional role, we expressed recombinant OBP28a and characterized its binding specificity. Using a fluorescent binding assay, we found that OBP28a binds a restricted number of floral-like chemicals, including ß-ionone, with an affinity in the micromolar range. We solved the X-ray crystal structure of OBP28a, which showed extensive conformation changes upon ligand binding. Mutant flies genetically deleted for the OBP28a gene showed altered responses to ß-ionone at a given concentration range, supporting its essential role in the detection of specific compounds present in the natural environment of the fly.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Norisoprenoides , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ligantes , Conformação Proteica , Receptores Odorantes/genética , Olfato
6.
Compr Rev Food Sci Food Saf ; 20(6): 5516-5547, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34653315

RESUMO

The oral cavity is an entry path into the body, enabling the intake of nutrients but also leading to the ingestion of harmful substances. Thus, saliva and oral tissues contain enzyme systems that enable the early neutralization of xenobiotics as soon as they enter the body. Based on recently published oral proteomic data from several research groups, this review identifies and compiles the primary detoxification enzymes (also known as xenobiotic-metabolizing enzymes) present in saliva and the oral epithelium. The functions and the metabolic activity of these enzymes are presented. Then, the activity of these enzymes in saliva, which is an extracellular fluid, is discussed with regard to the salivary parameters. The next part of the review presents research evidencing oral metabolization of aroma compounds and the putative involved enzymes. The last part discusses the potential role of these enzymatic reactions on the perception of aroma compounds in light of recent pieces of evidence of in vivo oral metabolization of aroma compounds affecting their release in mouth and their perception. Thus, this review highlights different enzymes appearing as relevant to explain aroma metabolism in the oral cavity. It also points out that further works are needed to unravel the effect of the oral enzymatic detoxification system on the perception of food flavor in the context of the consumption of complex food matrices, while considering the impact of food oral processing. Thus, it constitutes a basis to explore these biochemical mechanisms and their impact on flavor perception.


Assuntos
Odorantes , Proteoma , Boca , Proteômica , Saliva
7.
Clin Otolaryngol ; 46(3): 538-545, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33370507

RESUMO

OBJECTIVE: The aim of the pilot study was to explore which of the salivary parameters best reflects improvement or deterioration of taste function. METHODS: A total of 14 patients were included. Taste ability was measured using taste strips and patients rated their symptom strength using visual analogue scales. Salivary parameters (flow rate, total proteins, proteolysis, catalase, total anti-oxidative capacity [TAC], carbonic anhydrase VI [caVI], and pH) were determined and the Beck Depression Inventory (BDI) was administered. All these parameters were measured twice with a one-year interval to acquire the changes of data. RESULTS: Patients with decreased taste function exhibited a decrease in salivary proteolysis and caVI, and an increase in salivary total protein. Patients with increased taste function also showed an increase in salivary total protein. Δ Salivary flow rate was negatively correlated with Δ taste strip scores. Δ Salivary pH was significantly lower in patients with increased taste function compared to patients with decreased taste function. Δ BDI was positively correlated with both Δ symptoms ratings. Across all patients, symptom ratings decreased while salivary total protein increased; salivary flow rate, proteolysis and caVI decreased significantly compared with baseline. CONCLUSIONS: The present longitudinal results suggest that changes of both taste function and taste complaints were accompanied by changes in salivary parameters, indicating that salivary parameters have the potential to be useful in the diagnosis of patients with qualitative taste disorders.


Assuntos
Saliva/química , Distúrbios do Paladar/fisiopatologia , Adulto , Idoso , Antioxidantes/metabolismo , Depressão/complicações , Feminino , Humanos , Concentração de Íons de Hidrogênio , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Proteólise , Salivação
8.
Biol Reprod ; 102(6): 1326-1339, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32167534

RESUMO

At labor, the myometrium is infiltrated by a massive influx of macrophages that secrete high levels of pro-inflammatory cytokines inducing the expression of specific labor-associated markers. However, the interactions between myocytes and macrophages and the role of macrophages in the myometrium at labor remain to be elucidated. In this work, we studied the role of myometrium-infiltrated macrophages and their interaction with myocytes in lipopolysaccharide-induced preterm labor. A co-culture model of human primary myometrial cells and macrophages was developed and validated. Collagen lattices were used to evaluate myocyte contraction. Differentiation steps were assessed by (i) phalloidin and vinculin staining for cytoskeleton reorganization, (ii) gap junction protein alpha 1 expression and scrape loading/dye transfer with Lucifer Yellow for gap junction intercellular communication, and (iii) calcium imaging for cell excitability. We demonstrated that macrophages favored lipopolysaccharide-induced contraction and early differentiation of myometrial cells. Transwell assays showed that previous activation of macrophages by lipopolysaccharide was essential for this differentiation and that macrophage/myocyte interactions involved macrophage release of reactive oxygen species (ROS). The effects of macrophage-released ROS in myometrial cell transactivation were mimicked by H2O2, suggesting that superoxide anion is a major intermediate messenger in macrophage/myocyte crosstalk during labor. These novel findings provide the foundation for innovative approaches to managing preterm labor, specifically the use of antioxidants to inhibit the initial stages of labor before the contractile phenotype has been acquired. In addition, the co-culture model developed by our team could be used in future research to decipher pathophysiological signaling pathways or screen/develop new tocolytics.


Assuntos
Macrófagos/fisiologia , Miométrio/citologia , Parto/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Contração Uterina/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Contração Uterina/efeitos dos fármacos
9.
Chem Senses ; 45(8): 645-654, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-32822468

RESUMO

Xenobiotic metabolizing enzymes and other proteins, including odorant-binding proteins located in the nasal epithelium and mucus, participate in a series of processes modulating the concentration of odorants in the environment of olfactory receptors (ORs) and finely impact odor perception. These enzymes and transporters are thought to participate in odorant degradation or transport. Odorant biotransformation results in 1) changes in the odorant quantity up to their clearance and the termination of signaling and 2) the formation of new odorant stimuli (metabolites). Enzymes, such as cytochrome P450 and glutathione transferases (GSTs), have been proposed to participate in odorant clearance in insects and mammals as odorant metabolizing enzymes. This study aims to explore the function of GSTs in human olfaction. Using immunohistochemical methods, GSTs were found to be localized in human tissues surrounding the olfactory epithelium. Then, the activity of 2 members of the GST family toward odorants was measured using heterologously expressed enzymes. The interactions/reactions with odorants were further characterized using a combination of enzymatic techniques. Furthermore, the structure of the complex between human GSTA1 and the glutathione conjugate of an odorant was determined by X-ray crystallography. Our results strongly suggest the role of human GSTs in the modulation of odorant availability to ORs in the peripheral olfactory process.


Assuntos
Glutationa Transferase/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Glutationa Transferase/análise , Humanos
10.
Drug Metab Rev ; 51(2): 224-245, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31203698

RESUMO

The nasal tissues have the main consecutive roles of moistening and heating the air entering the respiratory tract and detecting odor via the activation of olfactory receptors in the neuro-olfactory epithelium. Initially, nasal toxicology was investigated to better assess the risk of nasal injuries caused by environmental toxicants or their active metabolites. Later, the characterization of the nasal toxicological barrier was a research concern for the purposes of intranasal drug delivery. Both fields allowed for an increase in our knowledge of the nasal xenobiotic-metabolizing enzymes and transporters that are highly expressed in this tissue. In addition to airborne toxicants or drugs, the main substrates for these proteins are natural volatiles known as odorants that emanate from our daily environment (food, perfume, plants, materials, congeners, etc.). Accordingly, another emerging field of interest has been developed that aims to understand the function of odorant-metabolizing enzymes (OMEs) in olfaction. Early in this field of research, OMEs were suspected to participate in the clearance of odorants from the receptor environment to avoid their saturation and thus maintain the sensitivity of neuronal detection. Other roles of OMEs that could significantly modulate olfaction were also considered, such as the involvement of odorant primary metabolites in the olfactory response. By combining enzymatic, physiological and sensory experimental approaches, recent advances have markedly improved our understanding of the contributions of OMEs to the olfactory process. This review combines recent data from the literature regarding nasal OME identification, localization, and activity and highlights the function of OMEs in olfaction.


Assuntos
Enzimas/metabolismo , Mucosa Nasal/metabolismo , Odorantes , Olfato/fisiologia , Animais , Humanos , Mucosa Nasal/enzimologia , Nariz/fisiologia
11.
Curr Opin Clin Nutr Metab Care ; 22(6): 472-478, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31490201

RESUMO

PURPOSE OF REVIEW: Polyphenols display beneficial health effects through chemopreventive actions on numerous chronic diseases including cancers, metabolic disorders, reproductive disorders and eating behaviour disorders. According to the principle of chemoreception, polyphenols bind cellular targets capable of accepting their stereochemistry, namely metabolizing enzymes and protein receptors, including taste receptors. The extraoral expression of taste receptors and their pharmacological interest in terms of novel drug therapies open up new perspectives on the potential use of these compounds and their interactions with other chemicals in cells. These new perspectives suggest the need to examine these phytochemicals further. However, most polyphenols have a bitterness property that may disrupt the acceptability of healthy foods or dietary supplements. RECENT FINDINGS: Polyphenols bind to oral and extraoral bitter type 2 taste receptors, which modulate the signalling pathways involved in anti-inflammatory processes and metabolic and dietary regulations. Depending on their chemical nature, polyphenols may act as activators or inhibitors of taste receptors, and combinations of polyphenols (or herbal mixtures) may be used to modulate the acceptability of bitterness. SUMMARY: The current review summarizes recent findings on polyphenol chemoreception and highlights the evidence of healthy effects through type 2 taste receptor mediation in signalling pathways, such as new targets, with promising perspectives.


Assuntos
Compostos Fitoquímicos , Polifenóis , Papilas Gustativas , Humanos , Transdução de Sinais , Paladar/fisiologia , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/fisiologia
12.
Chem Senses ; 43(8): 635-643, 2018 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-30137256

RESUMO

Gurmarin is a highly specific sweet taste-suppressing protein in rodents that is isolated from the Indian plant Gymnema sylvestre. Gurmarin consists of 35 amino acid residues containing 3 intramolecular disulfide bridges that form a cystine knot. Here, we report the crystal structure of gurmarin at a 1.45 Å resolution and compare it with previously reported nuclear magnetic resonance solution structures. The atomic structure at this resolution allowed us to identify a very flexible region consisting of hydrophobic residues. Some of these amino acid residues had been identified as a putative binding site for the rat sweet taste receptor in a previous study. By combining alanine-scanning mutagenesis of the gurmarin molecule and a functional cell-based receptor assay, we confirmed that some single point mutations in these positions drastically affect sweet taste receptor inhibition by gurmarin.


Assuntos
Aminoácidos/química , Cristalografia por Raios X/métodos , Proteínas de Plantas/química , Animais , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Ratos , Proteínas Recombinantes/química
13.
Curr Opin Clin Nutr Metab Care ; 20(4): 279-285, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28399012

RESUMO

PURPOSE OF REVIEW: The current review summarizes and discusses current knowledge on sweeteners and sweetness enhancers. RECENT FINDINGS: The perception of sweet taste is mediated by the type 1 taste receptor 2 (T1R2)/type 1 taste receptor 3 (T1R3) receptor, which is expressed in the oral cavity, where it provides input on the caloric and macronutrient contents of ingested food. This receptor recognizes all the compounds (natural or artificial) perceived as sweet by people. Sweeteners are highly chemically diverse including natural sugars, sugar alcohols, natural and synthetic sweeteners, and sweet-tasting proteins. This single receptor is also the target for developing novel sweet enhancers. Importantly, the expression of a functional T1R2/T1R3 receptor is described in numerous extraoral tissues. In this review, the physiological impact of sweeteners is discussed. SUMMARY: Sweeteners and sweetness enhancers are perceived through the T1R2/T1R3 taste receptor present both in mouth and numerous extraoral tissues. The accumulated knowledge on sugar substitutes raises the issue of potential health effects.


Assuntos
Edulcorantes , Paladar/fisiologia , Animais , Carboidratos da Dieta , Humanos , Obesidade , Receptores Acoplados a Proteínas G/fisiologia , Stevia , Álcoois Açúcares , Edulcorantes/efeitos adversos , Paladar/efeitos dos fármacos , Percepção Gustatória/fisiologia
14.
Protein Expr Purif ; 129: 31-43, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27642093

RESUMO

Olfactory receptors (ORs) play a crucial role in detecting the odorant molecules present in the surrounding environment. These receptors, which belong to class A G-protein-coupled receptors, constitute the largest transmembrane protein family in the human genome. Functional studies showed that the OR family includes members that are able to respond to a large set of odorants and members that are activated by a relatively small number of related odorants. To understand the molecular mechanisms that govern the receptor-ligand interactions, we overexpressed the human OR hOR1A1 in a stable tetracycline-inducible HEK293S cell line. This receptor was engineered by inserting a C-terminal rho1D4 epitope tag and an N-terminal FLAG epitope tag to allow its purification and detection. The functional activity of the FLAG-rho1D4-tagged hOR1A1 in heterologous HEK293S cells was analysed using a real-time cAMP assay. A two-step purification using monoclonal anti-FLAG immunoaffinity purification and gel filtration was then employed to purify the detergent-solubilized receptor. A size exclusion chromatography-multi-angle light scattering analysis showed the presence of monomeric and dimeric forms of FLAG-rho1D4-tagged hOR1A1. The amounts of the monomeric and dimeric forms purified from sixty T175 flasks were approximately 1.6 and 1.1 mg, respectively. The circular dichroism analysis showed that the purified receptor was properly folded. Ligand binding was quantified using an intrinsic tryptophan fluorescence assay and revealed that the detergent-solubilized FLAG-rho1D4-tagged hOR1A1 bound its cognate odorant, dihydrojasmone, with an affinity in the micromolar range. These results pave the way for future crystallographic and NMR studies.


Assuntos
Expressão Gênica , Receptores Odorantes , Células HEK293 , Humanos , Receptores Odorantes/biossíntese , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
15.
Curr Diab Rep ; 16(6): 49, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27085864

RESUMO

The T1R2 (taste type 1 receptor, member 2)/T1R3 (taste type 1 receptor, member 3) sweet taste receptor is expressed in taste buds on the tongue, where it allows the detection of energy-rich carbohydrates of food. This single receptor responds to all compounds perceived as sweet by humans, including natural sugars and natural and artificial sweeteners. Importantly, the T1R2/T1R3 sweet taste receptor is also expressed in extra-oral tissues, including the stomach, pancreas, gut, liver, and brain. Although its physiological role remains to be established in numerous organs, T1R2/T1R3 is suspected to be involved in the regulation of metabolic processes, such as sugar sensing, glucose homeostasis, and satiety hormone release. In this review, the physiological role of the sweet taste receptor in taste perception and metabolic regulation is discussed by focusing on dysfunctions leading to diabetes. Current knowledge of T1R2/T1R3 inhibitors making this receptor a promising therapeutic target for the treatment of type 2 diabetes is also summarized and discussed.


Assuntos
Diabetes Mellitus/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Animais , Metabolismo dos Carboidratos , Carboidratos , Humanos , Obesidade/metabolismo
16.
Soft Matter ; 11(3): 551-60, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25425418

RESUMO

In this paper, we compare the interactions between low methoxy pectin (LMP) and either Ca(2+) or Zn(2+) in semi-dilute solutions. Intrinsic viscosity and turbidity measurements reveal that pectin-calcium solutions are more viscous, but yet less turbid, than pectin-zinc ones. To get a molecular understanding of the origin of this rather unexpected behavior, we further performed isothermal titration calorimetry, small angle neutron scattering experiments, as well as molecular dynamics simulations. Our results suggest that calcium cations induce the formation of a more homogeneous network of pectin than zinc cations do. The molecular dynamics simulations indicate that this difference could originate from the way the two cations bind to the galacturonate unit (Gal), the main component of LMP: zinc interacts with both carboxylate and hydroxyl groups of Gal, in a similar way to that described in the so-called egg-box model, whereas calcium only interacts with carboxylate groups. This different binding behavior seems to arise from the stronger interaction of water molecules with zinc than with calcium. Accordingly, galacturonate chains are more loosely associated with each other in the presence of Ca(2+) than with Zn(2+). This may improve their ability to form a gel, not only by dimerization, but also by the formation of point-like cross-links. Overall, our results show that zinc binds less easily to pectin than calcium does.


Assuntos
Cálcio/química , Simulação de Dinâmica Molecular , Pectinas/química , Zinco/química , Ácidos Hexurônicos/química , Soluções , Viscosidade
17.
Curr Opin Clin Nutr Metab Care ; 17(4): 379-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24763065

RESUMO

PURPOSE OF REVIEW: This review summarizes and discusses the current knowledge about the physiological roles of the sweet taste receptor in oral and extraoral tissues. RECENT FINDINGS: The expression of a functional sweet taste receptor has been reported in numerous extragustatory tissues, including the gut, pancreas, bladder, brain and, more recently, bone and adipose tissues. In the gut, this receptor has been suggested to be involved in luminal glucose sensing, the release of some satiety hormones, the expression of glucose transporters, and the maintenance of glucose homeostasis. More recently, the sweet taste receptor was proposed to regulate adipogenesis and bone biology. SUMMARY: The perception of sweet taste is mediated by the T1R2/T1R3 receptor, which is expressed in the oral cavity, wherein it provides input on the caloric and macronutrient contents of ingested food. This receptor recognizes all the chemically diverse compounds perceived as sweet by human beings, including natural sugars and sweeteners. Importantly, the expression of a functional sweet taste receptor has been reported in numerous extragustatory tissues, wherein it has been proposed to regulate metabolic processes. This newly recognized role of the sweet taste receptor makes this receptor a potential novel therapeutic target for the treatment of obesity and related metabolic dysfunctions, such as diabetes and hyperlipidemia.


Assuntos
Receptores Acoplados a Proteínas G/fisiologia , Edulcorantes/metabolismo , Paladar/fisiologia , Tecido Adiposo/fisiologia , Animais , Trato Gastrointestinal/fisiologia , Coração/fisiologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Linfócitos/fisiologia , Modelos Animais , Polimorfismo Genético , Conformação Proteica , Papilas Gustativas/fisiologia , Bexiga Urinária/fisiologia
18.
Colloids Surf B Biointerfaces ; 239: 113964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761495

RESUMO

Delamanid is an anti-tuberculosis drug used for the treatment of drug-resistant tuberculosis. Since delamanid has a high protein bound potential, even patients with low albumin levels should experience high and rapid delamanid clearance. However, the interaction between delamanid and albumin should be better controlled to optimize drug efficacy. This study was designed to evaluate the binding characteristics of delamanid to human serum albumin (HSA) using various methods: fluorescence spectroscopy, circular dichroism (CD), surface plasmon resonance (SPR), and molecular docking simulation. The fluorescence emission band without any shift indicated the interaction was not affected by the polarity of the fluorophore microenvironment. The reduction of fluorescence intensity at 344 nm was proportional to the increment of delamanid concentration as a fluorescence quencher. UV-absorbance measurement at the maximum wavelength (λmax, 280 nm) was evaluated using inner filter effect correction. The HSA conformation change was explained by the intermolecular energy transfer between delamanid and HSA during complex formation. The study, which was conducted at temperatures of 298 K, 303 K, and 310 K, revealed a static quenching mechanism that correlated with a decreased of bimolecular quenching rate constant (kq) and binding constant (Ka) at increased temperatures. The Ka was 1.75-3.16 × 104 M-1 with a specific binding site with stoichiometry 1:1. The negative enthalpy change, negative entropy change, and negative Gibbs free energy change demonstrated an exothermic-spontaneous reaction while van der Waals forces and hydrogen bonds played a vital role in the binding. The molecular displacement approach and molecular docking confirmed that the binding occurred mainly in subdomain IIA, which is a hydrophobic pocket of HSA, with a theoretical binding free energy of -9.33 kcal/mol. SPR exhibited a real time negative sensorgram that resulted from deviation of the reflex angle due to ligand delamanid-HSA complex forming. The binding occurred spontaneously after delamanid was presented to the HSA surface. The SPR mathematical fitting model revealed that the association rate constant (kon) was 2.62 × 108 s-1M-1 and the dissociation rate constant (koff) was 5.65 × 10-3 s-1. The complexes were performed with an association constant (KA) of 4.64 × 1010 M-1 and the dissociation constant (KD) of 2.15 × 10-11 M. The binding constant indicated high binding affinity and high stability of the complex in an equilibrium. Modified CD spectra revealed that conformation of the HSA structure was altered by the presence of delamanid during preparation of the proliposomes that led to the reduction of secondary structure stabilization. This was indicated by the percentage decrease of α-helix. These findings are beneficial to understanding delamanid-HSA binding characteristics as well as the drug administration regimen.


Assuntos
Dicroísmo Circular , Simulação de Acoplamento Molecular , Albumina Sérica Humana , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Termodinâmica , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Cinética , Conformação Proteica , Ligação Proteica , Oxazóis/química , Oxazóis/metabolismo
20.
J Agric Food Chem ; 72(11): 5887-5897, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441878

RESUMO

Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 µM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 µM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 µM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 µM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.


Assuntos
Glutationa Transferase , Luteolina , Ratos , Animais , Humanos , Glutationa Transferase/metabolismo , Mucosa Bucal/metabolismo , Compostos de Sulfidrila , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA