Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Obstet Gynecol ; 220(1): 45-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171843

RESUMO

Zika virus is a mosquito-transmitted flavivirus and was first linked to congenital microcephaly caused by a large outbreak in northeastern Brazil. Although the Zika virus epidemic is now in decline, pregnancies in large parts of the Americas remain at risk because of ongoing transmission and the potential for new outbreaks. This review presents why Zika virus is still a complex and worrisome public health problem with an expanding spectrum of birth defects and how Zika virus and related viruses evade the immune response to injure the fetus. Recent reports indicate that the spectrum of fetal brain and other anomalies associated with Zika virus exposure is broader and more complex than microcephaly alone and includes subtle fetal brain and ocular injuries; thus, the ability to prenatally diagnose fetal injury associated with Zika virus infection remains limited. New studies indicate that Zika virus imparts disproportionate effects on fetal growth with an unusual femur-sparing profile, potentially providing a new approach to identify viral injury to the fetus. Studies to determine the limitations of prenatal and postnatal testing for detection of Zika virus-associated birth defects and long-term neurocognitive deficits are needed to better guide women with a possible infectious exposure. It is also imperative that we investigate why the Zika virus is so adept at infecting the placenta and the fetal brain to better predict other viruses with similar capabilities that may give rise to new epidemics. The efficiency with which the Zika virus evades the early immune response to enable infection of the mother, placenta, and fetus is likely critical for understanding why the infection may either be fulminant or limited. Furthermore, studies suggest that several emerging and related viruses may also cause birth defects, including West Nile virus, which is endemic in many parts of the United States. With mosquito-borne diseases increasing worldwide, there remains an urgent need to better understand the pathogenesis of the Zika virus and related viruses to protect pregnancies and child health.


Assuntos
Anormalidades Congênitas/epidemiologia , Anormalidades Congênitas/virologia , Surtos de Doenças , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/epidemiologia , Infecção por Zika virus/epidemiologia , Anormalidades Congênitas/diagnóstico , Feminino , Saúde Global , Humanos , Recém-Nascido , Microcefalia/epidemiologia , Microcefalia/virologia , Gravidez , Prevalência , Medição de Risco , Estados Unidos/epidemiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/prevenção & controle
2.
Proc Natl Acad Sci U S A ; 110(10): 4081-6, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431145

RESUMO

The cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a "protomap" in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The "intermediate map" in the SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 → Eomes → Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Padronização Corporal , Mapeamento Encefálico , Córtex Cerebral/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Gravidez , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética
3.
J Neurosci ; 33(21): 9122-39, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699523

RESUMO

The mammalian neocortical progenitor cell niche is composed of a diverse repertoire of neuroepithelial cells, radial glia (RG), and intermediate neurogenic progenitors (INPs). Previously, live-cell imaging experiments have proved crucial in identifying these distinct progenitor populations, especially INPs, which amplify neural output by undergoing additional rounds of proliferation before differentiating into new neurons. INPs also provide feedback to the RG pool by serving as a source of Delta-like 1 (Dll1), a key ligand for activating Notch signaling in neighboring cells, a well-known mechanism for maintaining RG identity. While much is known about Dll1-Notch signaling at the molecular level, little is known about how this cell-cell contact dependent feedback is transmitted at the cellular level. To investigate how RG and INPs might interact to convey Notch signals, we used high-resolution live-cell multiphoton microscopy (MPM) to directly observe cellular interactions and dynamics, in conjunction with Notch-pathway specific reporters in the neocortical neural stem cell niche in organotypic brain slices from embryonic mice. We found that INPs and RG interact via dynamic and transient elongate processes, some apparently long-range (extending from the subventricular zone to the ventricular zone), and some short-range (filopodia-like). Gene expression profiling of RG and INPs revealed further progenitor cell diversification, including different subpopulations of Hes1+ and/or Hes5+ RG, and Dll1+ and/or Dll3+ INPs. Thus, the embryonic progenitor niche includes a network of dynamic cell-cell interactions, using different combinations of Notch signaling molecules to maintain and likely diversify progenitor pools.


Assuntos
Comunicação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neocórtex/citologia , Células-Tronco Neurais/fisiologia , Neuroglia/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Ligação ao Cálcio , Comunicação Celular/genética , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Embrião de Mamíferos , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/embriologia , Rede Nervosa/fisiologia , Células-Tronco Neurais/citologia , Dinâmica não Linear , Técnicas de Cultura de Órgãos , Pseudópodes/fisiologia , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Transfecção
4.
J Neurosci ; 33(9): 4165-80, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447624

RESUMO

The dentate gyrus (DG) is a unique cortical region whose protracted development spans the embryonic and early postnatal periods. DG development involves large-scale reorganization of progenitor cell populations, ultimately leading to the establishment of the subgranular zone neurogenic niche. In the developing DG, the T-box transcription factor Tbr2 is expressed in both Cajal-Retzius cells derived from the cortical hem that guide migration of progenitors and neurons to the DG, and intermediate neuronal progenitors born in the dentate neuroepithelium that give rise to granule neurons. Here we show that in mice Tbr2 is required for proper migration of Cajal-Retzius cells to the DG; and, in the absence of Tbr2, formation of the hippocampal fissure is abnormal, leading to aberrant development of the transhilar radial glial scaffold and impaired migration of progenitors and neuroblasts to the developing DG. Furthermore, loss of Tbr2 results in decreased expression of Cxcr4 in migrating cells, leading to a premature burst of granule neurogenesis during early embryonic development accompanied by increased cell death in mutant animals. Formation of the transient subpial neurogenic zone was abnormal in Tbr2 conditional knock-outs, and the stem cell population in the DG was depleted before proper establishment of the subgranular zone. These studies indicate that Tbr2 is explicitly required for morphogenesis of the DG and participates in multiple aspects of the intricate developmental process of this structure.


Assuntos
Giro Denteado/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/metabolismo , Neurônios/fisiologia , Proteínas com Domínio T/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Bromodesoxiuridina , Diferenciação Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Giro Denteado/embriologia , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurogênese/genética , Neurônios/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Nicho de Células-Tronco/fisiologia , Proteínas com Domínio T/genética , Tamoxifeno/farmacologia , Proteínas Supressoras de Tumor/metabolismo
5.
J Neurosci ; 32(18): 6275-87, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22553033

RESUMO

Neurogenesis in the dentate gyrus has been implicated in cognitive functions, including learning and memory, and may be abnormal in major neuropsychiatric disorders, such as depression. Dentate neurogenesis is regulated by interactions between extrinsic factors and intrinsic transcriptional cascades that are currently not well understood. Here we show that Tbr2 (also known as Eomes), a T-box transcription factor expressed by intermediate neuronal progenitors (INPs), is critically required for neurogenesis in the dentate gyrus of developing and adult mice. In the absence of Tbr2, INPs are depleted despite augmented neural stem cell (NSC) proliferation, and neurogenesis is halted as the result of failed neuronal differentiation. Interestingly, we find that Tbr2 likely promotes lineage progression from NSC to neuronal-specified INP in part by repression of Sox2, a key determinant of NSC identity. These findings suggest that Tbr2 expression in INPs is critical for neuronal differentiation in the dentate gyrus and that INPs are an essential stage in the lineage from NSCs to new granule neurons in the dentate gyrus.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Diferenciação Celular/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia
6.
Proc Natl Acad Sci U S A ; 107(29): 13129-34, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20615956

RESUMO

Areas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitose , Neocórtex/citologia , Neocórtex/embriologia , Neurônios/citologia , Animais , Biomarcadores/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação/genética , Neocórtex/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Ligação Proteica , Proteínas com Domínio T , Fatores de Transcrição , Ativação Transcricional , Regulação para Cima/genética
7.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37552705

RESUMO

There is increasing interest in the African spiny mouse (Acomys cahirinus) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from 4 different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.


Assuntos
Murinae , Pele , Animais , Murinae/genética , Músculo Esquelético , Análise de Sequência de RNA
8.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066261

RESUMO

There is increasing interest in the African spiny mouse ( Acomys cahirinus ) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from four different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.

9.
Proc Natl Acad Sci U S A ; 105(49): 19508-13, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19033471

RESUMO

Müller glia can serve as a source of new neurons after retinal damage in both fish and birds. Investigations of regeneration in the mammalian retina in vitro have provided some evidence that Müller glia can proliferate after retinal damage and generate new rods; however, the evidence that this occurs in vivo is not conclusive. We have investigated whether Müller glia have the potential to generate neurons in the mouse retina in vivo by eliminating ganglion and amacrine cells with intraocular NMDA injections and stimulating Müller glial to re-enter the mitotic cycle by treatment with specific growth factors. The proliferating Müller glia dedifferentiate and a subset of these cells differentiated into amacrine cells, as defined by the expression of amacrine cell-specific markers Calretinin, NeuN, Prox1, and GAD67-GFP. These results show for the first time that the mammalian retina has the potential to regenerate inner retinal neurons in vivo.


Assuntos
Regeneração Nervosa/fisiologia , Neuroglia/citologia , Neurônios/citologia , Retina/citologia , Retina/fisiologia , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Biomarcadores/metabolismo , Calbindina 2 , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA , Denervação , Agonistas de Aminoácidos Excitatórios/toxicidade , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , N-Metilaspartato/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
J Thorac Cardiovasc Surg ; 161(6): e485-e498, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32037238

RESUMO

OBJECTIVE: Dysregulation of local nitric oxide (NO) synthetases occurs during ischemia and reperfusion associated with cardiopulmonary bypass, deep hypothermic circulatory arrest (DHCA), and reperfusion. Rapid fluctuations in local NO occurring in neonates and infants probably contribute to inflammation-induced microglial activation and neuronal degeneration after these procedures, eventually impairing neurodevelopment. We evaluated the anti-inflammatory efficacy of inhaled NO (iNO) in a piglet model emulating conditions during pediatric open-heart surgery with DHCA. METHODS: Infant Yorkshire piglets underwent DHCA (18°C) for 30 minutes, followed by reperfusion and rewarming either with or without iNO (20 ppm) in the ventilator at the onset of reperfusion for 3 hours (n = 5 per group, DHCA-iNO and DHCA). Through craniotomy, brains were extracted after perfusion fixation for histology. RESULTS: Plasma NO metabolites were elevated 2.5 times baseline data before DHCA by iNO. Fluoro-Jade C staining identified significantly lower number of degenerating neurons in the hippocampus of the DHCA-iNO group (P = .02) compared with the DHCA group. Morphologic analyses of ionized calcium-binding adapter molecule-1 stained microglia, evaluating cell body and dendritic process geometry with Imaris imaging software, revealed subjectively less microglial activation in the hippocampus of pigs receiving iNO. CONCLUSIONS: Using DHCA for 30 minutes, consistent with clinical exposure, we noted that iNO reduces neuronal degeneration in the hippocampus. In addition, iNO reduces microglial activation in the hippocampus after DHCA. The data suggest that iNO reduces neuronal degeneration by ameliorating inflammation and may be a practical mode of neuroprotection for infants undergoing DHCA.


Assuntos
Parada Circulatória Induzida por Hipotermia Profunda , Hipocampo , Microglia , Óxido Nítrico , Animais , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Inflamação/patologia , Masculino , Microglia/citologia , Microglia/efeitos dos fármacos , Óxido Nítrico/administração & dosagem , Óxido Nítrico/sangue , Óxido Nítrico/farmacologia , Suínos
11.
Dev Cell ; 56(19): 2722-2740.e6, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34610329

RESUMO

Spiny mice (Acomys cahirinus) are terrestrial mammals that evolved unique scar-free regenerative wound-healing properties. Myofibroblasts (MFs) are the major scar-forming cell type in skin. We found that following traumatic injury to ear pinnae, MFs appeared rapidly in both Acomys and mouse yet persisted only in mouse. The timing of MF loss in Acomys correlated with wound closure, blastema differentiation, and nuclear localization of the Hippo pathway target protein Yap. Experiments in vitro revealed an accelerated PP2A-dependent dephosphorylation activity that maintained nuclear Yap in Acomys dermal fibroblasts (DFs) and was not detected in mouse or human DFs. Treatment of Acomys in vivo with the nuclear Yap-TEAD inhibitor verteporfin prolonged MF persistence and converted tissue regeneration to fibrosis. Forced Yap activity prevented and rescued TGF-ß1-induced human MF formation in vitro. These results suggest that Acomys evolved modifications of Yap activity and MF fate important for scar-free regenerative wound healing in vivo.


Assuntos
Via de Sinalização Hippo/fisiologia , Cicatrização/fisiologia , Proteínas de Sinalização YAP/metabolismo , Animais , Cicatriz/metabolismo , Cicatriz/patologia , Orelha/patologia , Camundongos , Murinae/fisiologia , Miofibroblastos/metabolismo , Pele/metabolismo
12.
iScience ; 24(11): 103269, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849462

RESUMO

Fibrosis-driven solid organ failure is an enormous burden on global health. Spiny mice (Acomys) are terrestrial mammals that can regenerate severe skin wounds without scars to avoid predation. Whether spiny mice also regenerate internal organ injuries is unknown. Here, we show that despite equivalent acute obstructive or ischemic kidney injury, spiny mice fully regenerate nephron structure and organ function without fibrosis, whereas C57Bl/6 or CD1 mice progress to complete organ failure with extensive renal fibrosis. Two mechanisms for vertebrate regeneration have been proposed that emphasize either extrinsic (pro-regenerative macrophages) or intrinsic (surviving cells of the organ itself) controls. Comparative transcriptome analysis revealed that the Acomys genome appears poised at the time of injury to initiate regeneration by surviving kidney cells, whereas macrophage accumulation was not detected until about day 7. Thus, we provide evidence for rapid activation of a gene expression signature for regenerative wound healing in the spiny mouse kidney.

13.
Dev Dyn ; 238(9): 2163-78, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19191219

RESUMO

Delta gene expression in Drosophila is regulated by proneural basic helix-loop-helix (bHLH) transcription factors, such as acheate-scute. In vertebrates, multiple Delta-like and proneural bHLH genes are expressed during neurogenesis, especially in the retina. We recently uncovered a relationship between Acheate-scute like 1 (Ascl1), Delta-like genes, and Notch in chick retinal progenitors. Here, we report that mammalian retinal progenitors are also the primary source of Delta-like genes, likely signaling through Notch among themselves, while differentiating neurons expressed Jagged2. Ascl1 is coexpressed in Delta-like and Notch active progenitors, and required for normal Delta-like gene expression and Notch signaling. We also reveal a role for Ascl1 in the regulation of Hes6, a proneurogenic factor that inhibits Notch signaling to promote neural rather than glial differentiation. Thus, these results suggest a molecular mechanism whereby attenuated Notch levels coupled with reduced proneurogenic activity in progenitors leads to increased gliogenesis and decreased neurogenesis in the Ascl1-deficient retina.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Notch/metabolismo , Retina/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteínas de Drosophila , Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1 , Proteína Jagged-2 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Receptores Notch/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Retina/citologia , Proteínas Serrate-Jagged , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
14.
Elife ; 92020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32238264

RESUMO

The hippocampal dentate gyrus (DG) is a unique brain region maintaining neural stem cells (NCSs) and neurogenesis into adulthood. We used multiphoton imaging to visualize genetically defined progenitor subpopulations in live slices across key stages of mouse DG development, testing decades old static models of DG formation with molecular identification, genetic-lineage tracing, and mutant analyses. We found novel progenitor migrations, timings, dynamic cell-cell interactions, signaling activities, and routes underlie mosaic DG formation. Intermediate progenitors (IPs, Tbr2+) pioneered migrations, supporting and guiding later emigrating NSCs (Sox9+) through multiple transient zones prior to converging at the nascent outer adult niche in a dynamic settling process, generating all prenatal and postnatal granule neurons in defined spatiotemporal order. IPs (Dll1+) extensively targeted contacts to mitotic NSCs (Notch active), revealing a substrate for cell-cell contact support during migrations, a developmental feature maintained in adults. Mouse DG formation shares conserved features of human neocortical expansion.


Assuntos
Giro Denteado/embriologia , Células-Tronco Neurais/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Comunicação Celular , Movimento Celular , Giro Denteado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Proteínas com Domínio T/fisiologia
15.
Viral Immunol ; 33(1): 22-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31687902

RESUMO

Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused a public health emergency in the Americas when an outbreak in Brazil became linked to congenital microcephaly. Understanding how ZIKV could evade the innate immune defenses of the mother, placenta, and fetus has become central to determining how the virus can traffic into the fetal brain. ZIKV, like other flaviviruses, evades host innate immune responses by leveraging viral proteins and other processes that occur during viral replication to allow spread to the placenta. Within the placenta, there are diverse cell types with coreceptors for ZIKV entry, creating an opportunity for the virus to establish a reservoir for replication and infect the fetus. The fetal brain is vulnerable to ZIKV, particularly during the first trimester, when it is beginning a dynamic process, to form highly complex and specialized regions orchestrated by neuroprogenitor cells. In this review, we provide a conceptual framework to understand the different routes for viral trafficking into the fetal brain and the eye, which are most likely to occur early and later in pregnancy. Based on the injury profile in human and nonhuman primates, ZIKV entry into the fetal brain likely occurs across both the blood/cerebrospinal fluid barrier in the choroid plexus and the blood/brain barrier. ZIKV can also enter the eye by trafficking across the blood/retinal barrier. Ultimately, the efficient escape of innate immune defenses by ZIKV is a key factor leading to viral infection. However, the host immune response against ZIKV can lead to injury and perturbations in developmental programs that drive cellular division, migration, and brain growth. The combined effect of innate immune evasion to facilitate viral propagation and the maternal/placental/fetal immune response to control the infection will determine the extent to which ZIKV can injure the fetal brain.


Assuntos
Encéfalo/virologia , Olho/virologia , Feto/virologia , Evasão da Resposta Imune , Infecção por Zika virus/imunologia , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Placenta/virologia , Gravidez , Internalização do Vírus , Replicação Viral , Zika virus/fisiologia
16.
Dev Biol ; 312(1): 300-11, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18028900

RESUMO

The chicken retina is capable of limited regeneration. In response to injury, some Müller glia proliferate and de-differentiate into progenitor cells. However, most of these progenitors fail to differentiate into neurons. The Notch pathway is upregulated during retinal regeneration in both fish and amphibians. Since the Notch signaling pathway maintains cells in a progenitor state during development, we hypothesized that a persistently active Notch pathway might prevent a more successful regeneration in the chick retina. We found that Notch signaling components are upregulated in the proliferating progenitors. We also found that blocking the Notch pathway while Müller glia are de-differentiating into progenitor cells prohibits regeneration; conversely, blocking the Notch pathway after the progenitors have been generated from the Müller glia caused a significant increase in the percentage of new neurons. Thus, Notch signaling appears to play two distinct roles during retinal regeneration. Initially, Notch activity is necessary for the de-differentiation/proliferation of Müller glia, while later it inhibits the differentiation of the newly generated progenitor cells.


Assuntos
Galinhas/fisiologia , Receptores Notch/metabolismo , Regeneração , Retina/fisiologia , Transdução de Sinais , Animais , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Receptores Notch/genética , Regeneração/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Triglicerídeos/farmacologia , Regulação para Cima/efeitos dos fármacos , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/farmacologia
17.
Trends Microbiol ; 26(9): 729-732, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29960747

RESUMO

Pregnancy infections with Zika virus are associated with a spectrum of fetal brain injuries beyond microcephaly. Nonmicrocephalic children exposed to Zika virus in utero or early life should undergo neurodevelopmental testing to identify deficits and allow for early intervention. Additionally, long-term monitoring for higher order neurocognitive deficits should be implemented.


Assuntos
Intervenção Educacional Precoce , Monitorização Fisiológica , Infecção por Zika virus/congênito , Infecção por Zika virus/diagnóstico , Zika virus/patogenicidade , Lesões Encefálicas , Criança , Doenças Transmissíveis Emergentes/congênito , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/epidemiologia , Feminino , Humanos , Testes de Estado Mental e Demência , Microcefalia , Transtornos Neurocognitivos , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/epidemiologia , Infecção por Zika virus/epidemiologia
18.
Nat Med ; 24(3): 368-374, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29400709

RESUMO

Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.


Assuntos
Feto/virologia , Complicações Infecciosas na Gravidez/fisiopatologia , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Feto/fisiopatologia , Humanos , Macaca nemestrina/virologia , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Microcefalia/virologia , Neurogênese/genética , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico por imagem , Complicações Infecciosas na Gravidez/virologia , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/fisiopatologia
19.
Mech Dev ; 119 Suppl 1: S11-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14516654

RESUMO

We have identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a screen designed to isolate molecules regulating sensory neuron genesis and differentiation in the dorsal root ganglia (DRG). In investigating NELL2 expression during embryogenesis, we demonstrate here that NELL2 is highly regulated spatially and temporally, being only transiently expressed in discrete regions of the central (CNS) and peripheral nervous systems (PNS) and in a subset of mesoderm derived structures during their peak periods of development. In the CNS and PNS, NELL2 is maximally expressed as motor and sensory neurons differentiate. Interestingly, its expression is restricted to sublineages of the neural crest, being strongly expressed throughout the immature DRG, but excluded from sympathetic ganglia. Similarly during muscle development, NELL2 is specifically expressed by hypaxial muscle precursor cells in the differentiating somite and derivatives in the forelimbs and body wall, but not by epaxial muscle precursors. Furthermore, NELL2 is differentially regulated in the CNS and PNS; in the CNS, NELL2 is only expressed by nascent, post-mitotic neurons as they commence their differentiation, yet in the PNS, NELL2 is expressed by subsets of progenitor cells in addition to nascent neurons. Based on this restricted spatial and temporal expression pattern, functional studies are in progress to determine NELL2's role during neuronal differentiation in both the PNS and CNS.


Assuntos
Gânglios Espinais , Neurônios , Animais , Diferenciação Celular , Família de Proteínas EGF , Gânglios Espinais/citologia , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Neurônios/metabolismo
20.
Gene Expr Patterns ; 2(1-2): 7-15, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12617830

RESUMO

We have identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a screen designed to isolate molecules regulating sensory neuron genesis and differentiation in the dorsal root ganglia (DRG). In investigating NELL2 expression during embryogenesis, we demonstrate here that NELL2 is highly regulated spatially and temporally, being only transiently expressed in discrete regions of the central (CNS) and peripheral nervous systems (PNS) and in a subset of mesoderm derived structures during their peak periods of development. In the CNS and PNS, NELL2 is maximally expressed as motor and sensory neurons differentiate. Interestingly, its expression is restricted to sublineages of the neural crest, being strongly expressed throughout the immature DRG, but excluded from sympathetic ganglia. Similarly during muscle development, NELL2 is specifically expressed by hypaxial muscle precursor cells in the differentiating somite and derivatives in the forelimbs and body wall, but not by epaxial muscle precursors. Furthermore, NELL2 is differentially regulated in the CNS and PNS; in the CNS, NELL2 is only expressed by nascent, post-mitotic neurons as they commence their differentiation, yet in the PNS, NELL2 is expressed by subsets of progenitor cells in addition to nascent neurons. Based on this restricted spatial and temporal expression pattern, functional studies are in progress to determine NELL2's role during neuronal differentiation in both the PNS and CNS.


Assuntos
Diferenciação Celular/genética , Células Musculares/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Animais , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Embrião de Galinha , Células Musculares/citologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Neurônios/citologia , Especificidade de Órgãos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA