Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NPJ Microgravity ; 10(1): 46, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600142

RESUMO

A potential contribution to the progression of Spaceflight Associated Neuro-ocular Syndrome is the thoracic-to-spinal dural sac transmural pressure relationship. In this study, we utilize a lumped-parameter computational model of human cerebrospinal fluid (CSF) systems to investigate mechanisms of CSF redistribution. We present two analyses to illustrate potential mechanisms for CSF pressure alterations similar to those observed in microgravity conditions. Our numerical evidence suggests that the compliant relationship between thoracic and CSF compartments is insufficient to solely explain the observed decrease in CSF pressure with respect to the supine position. Our analyses suggest that the interaction between thoracic pressure and the cardiovascular system, particularly the central veins, has greater influence on CSF pressure. These results indicate that future studies should focus on the holistic system, with the impact of cardiovascular changes to the CSF pressure emphasized over the sequestration of fluid in the spine.

2.
Nat Commun ; 15(1): 2634, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528030

RESUMO

Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight. The base device addresses critical spaceflight requirements including minimal resource utilization and alignment-free optics for surviving rocket launch. To fully enable reduced gravity operation onboard the space station, we incorporated bubble-free fluidics, electromagnetic shielding, and gravity-independent sample introduction. We show microvolume flow cytometry from 10 µL sample drops, with data from five simultaneous channels using 10 µs bin intervals during each sample run, yielding an average of 72 million raw data points in approximately 2 min. We demonstrate the device measures each test sample repeatably, including correct identification of a sample that degraded in transit to the International Space Station. This approach can be utilized to further our understanding of spaceflight biology and provide immediate, actionable diagnostic information for management of astronaut health without the need for Earth-dependent analysis.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Citometria de Fluxo , Lua
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA