Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 184(22): 5635-5652.e29, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34653350

RESUMO

While prime editing enables precise sequence changes in DNA, cellular determinants of prime editing remain poorly understood. Using pooled CRISPRi screens, we discovered that DNA mismatch repair (MMR) impedes prime editing and promotes undesired indel byproducts. We developed PE4 and PE5 prime editing systems in which transient expression of an engineered MMR-inhibiting protein enhances the efficiency of substitution, small insertion, and small deletion prime edits by an average 7.7-fold and 2.0-fold compared to PE2 and PE3 systems, respectively, while improving edit/indel ratios by 3.4-fold in MMR-proficient cell types. Strategic installation of silent mutations near the intended edit can enhance prime editing outcomes by evading MMR. Prime editor protein optimization resulted in a PEmax architecture that enhances editing efficacy by 2.8-fold on average in HeLa cells. These findings enrich our understanding of prime editing and establish prime editing systems that show substantial improvement across 191 edits in seven mammalian cell types.


Assuntos
Edição de Genes , Sistemas CRISPR-Cas/genética , Linhagem Celular , DNA/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Feminino , Genes Dominantes , Genoma Humano , Humanos , Masculino , Modelos Biológicos , Proteína 1 Homóloga a MutL/genética , Mutação/genética , RNA/metabolismo , Reprodutibilidade dos Testes
2.
Mol Cell ; 65(2): 220-230, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989440

RESUMO

The guanidyl moiety is a component of fundamental metabolites, including the amino acid arginine, the energy carrier creatine, and the nucleobase guanine. Curiously, reports regarding the importance of free guanidine in biology are sparse, and no biological receptors that specifically recognize this compound have been previously identified. We report that many members of the ykkC motif RNA, the longest unresolved riboswitch candidate, naturally sense and respond to guanidine. This RNA is found throughout much of the bacterial domain of life, where it commonly controls the expression of proteins annotated as urea carboxylases and multidrug efflux pumps. Our analyses reveal that these proteins likely function as guanidine carboxylases and guanidine transporters, respectively. Furthermore, we demonstrate that bacteria are capable of endogenously producing guanidine. These and related findings demonstrate that free guanidine is a biologically relevant compound, and several gene families that can alleviate guanidine toxicity exist.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Guanidina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Riboswitch , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Especificidade por Substrato
4.
Mol Cell ; 57(2): 317-28, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25616067

RESUMO

Over 30 years ago, ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein, we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one-carbon metabolism. Biochemical data confirm that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages.


Assuntos
Purinas/biossíntese , RNA Bacteriano/genética , Riboswitch , Sequência de Bases , Clostridium acetobutylicum/genética , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Sequências Repetidas Invertidas , Dados de Sequência Molecular
5.
FASEB J ; 35(2): e21201, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496989

RESUMO

In recent years, it has become apparent that the gut microbiome can influence the functioning and pathological states of organs and systems throughout the body. In this study, we tested the hypothesis that the gut microbiome has a major role in the disruption of the blood-brain barrier (BBB) in the spontaneously hypertensive stroke prone rats (SHRSP), an animal model for hypertensive cerebral small vessel disease (CSVD). Loss of BBB is thought to be an early and initiating component to the full expression of CSVD in animal models and humans. To test this hypothesis, newly born SHRSP pups were placed with foster dams of the SHRSP strain or dams of the WKY strain, the control strain that does not demonstrate BBB dysfunction or develop hypertensive CSVD. Similarly, WKY pups were placed with foster dams of the same or opposite strain. The rationale for cross fostering is that the gut microbiomes are shaped by environmental bacteria of the foster dam and the nesting surroundings. Analysis of the bacterial genera in feces, using 16S rRNA analysis, demonstrated that the gut microbiome in the rat pups was influenced by the foster dam. SHRSP offspring fostered on WKY dams had systolic blood pressures (SBPs) that were significantly decreased by 26 mmHg (P < .001) from 16-20 weeks, compared to SHRSP offspring fostered on SHRSP dams. Similarly WKY offspring fostered on SHRSP dams had significantly increased SBP compared to WKY offspring fostered on WKY dams, although the magnitude of SBP change was not as robust. At ~20 weeks of age, rats fostered on SHRSP dams showed enhanced inflammation in distal ileum regardless of the strain of the offspring. Disruption of BBB integrity, an early marker of CSVD onset, was improved in SHRSPs that were fostered on WKY dams when compared to the SHRSP rats fostered on SHRSP dams. Although SHRSP is a genetic model for CSVD, environmental factors such as the gut microbiota of the foster dam have a major influence in the loss of BBB integrity.


Assuntos
Pressão Sanguínea , Barreira Hematoencefálica/patologia , Microbioma Gastrointestinal , Animais , Barreira Hematoencefálica/metabolismo , Meio Ambiente , Íleo/microbiologia , Íleo/patologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
6.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638809

RESUMO

Enzyme therapies are attracting significant attention as thrombolytic drugs during the current scenario owing to their great affinity, specificity, catalytic activity, and stability. Among various sources, the application of microbial-derived thrombolytic and fibrinolytic enzymes to prevent and treat vascular occlusion is promising due to their advantageous cost-benefit ratio and large-scale production. Thrombotic complications such as stroke, myocardial infarction, pulmonary embolism, deep venous thrombosis, and peripheral occlusive diseases resulting from blood vessel blockage are the major cause of poor prognosis and mortality. Given the ability of microbial thrombolytic enzymes to dissolve blood clots and prevent any adverse effects, their use as a potential thrombolytic therapy has attracted great interest. A better understanding of the hemostasis and fibrinolytic system may aid in improving the efficacy and safety of this treatment approach over classical thrombolytic agents. Here, we concisely discuss the physiological mechanism of thrombus formation, thrombo-, and fibrinolysis, thrombolytic and fibrinolytic agents isolated from bacteria, fungi, and algae along with their mode of action and the potential application of microbial enzymes in thrombosis therapy.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/farmacologia , Fibrinolíticos/farmacologia , Proteínas Fúngicas/farmacologia , Fungos/enzimologia , Trombose/tratamento farmacológico , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Terapia Trombolítica
7.
Proc Natl Acad Sci U S A ; 114(11): E2077-E2085, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28265071

RESUMO

Riboswitches are RNAs that form complex, folded structures that selectively bind small molecules or ions. As with certain groups of protein enzymes and receptors, some riboswitch classes have evolved to change their ligand specificity. We developed a procedure to systematically analyze known riboswitch classes to find additional variants that have altered their ligand specificity. This approach uses multiple-sequence alignments, atomic-resolution structural information, and riboswitch gene associations. Among the discoveries are unique variants of the guanine riboswitch class that most tightly bind the nucleoside 2'-deoxyguanosine. In addition, we identified variants of the glycine riboswitch class that no longer recognize this amino acid, additional members of a rare flavin mononucleotide (FMN) variant class, and also variants of c-di-GMP-I and -II riboswitches that might recognize different bacterial signaling molecules. These findings further reveal the diverse molecular sensing capabilities of RNA, which highlights the potential for discovering a large number of additional natural riboswitch classes.


Assuntos
Biologia Computacional/métodos , RNA/química , RNA/genética , Riboswitch/genética , Sequência de Bases , Sítios de Ligação , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Desoxiguanosina/química , Glicina/química , Guanina/química , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico
8.
Nucleic Acids Res ; 45(18): 10811-10823, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977401

RESUMO

The discovery of structured non-coding RNAs (ncRNAs) in bacteria can reveal new facets of biology and biochemistry. Comparative genomics analyses executed by powerful computer algorithms have successfully been used to uncover many novel bacterial ncRNA classes in recent years. However, this general search strategy favors the discovery of more common ncRNA classes, whereas progressively rarer classes are correspondingly more difficult to identify. In the current study, we confront this problem by devising several methods to select subsets of intergenic regions that can concentrate these rare RNA classes, thereby increasing the probability that comparative sequence analysis approaches will reveal their existence. By implementing these methods, we discovered 224 novel ncRNA classes, which include ROOL RNA, an RNA class averaging 581 nt and present in multiple phyla, several highly conserved and widespread ncRNA classes with properties that suggest sophisticated biochemical functions and a multitude of putative cis-regulatory RNA classes involved in a variety of biological processes. We expect that further research on these newly found RNA classes will reveal additional aspects of novel biology, and allow for greater insights into the biochemistry performed by ncRNAs.


Assuntos
RNA Bacteriano/química , RNA não Traduzido/química , Sequências Reguladoras de Ácido Ribonucleico , Integrons , Motivos de Nucleotídeos , Plasmídeos/genética , Transcrição Reversa
9.
Proc Natl Acad Sci U S A ; 112(17): 5389-94, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25848023

RESUMO

Major changes in bacterial physiology including biofilm and spore formation involve signaling by the cyclic dinucleotides c-di-GMP and c-di-AMP. Recently, another second messenger dinucleotide, c-AMP-GMP, was found to control chemotaxis and colonization by Vibrio cholerae. We have identified a superregulon of genes controlled by c-AMP-GMP in numerous Deltaproteobacteria, including Geobacter species that use extracellular insoluble metal oxides as terminal electron acceptors. This exoelectrogenic process has been studied for its possible utility in energy production and bioremediation. Many genes involved in adhesion, pilin formation, and others that are important for exoelectrogenesis are controlled by members of a variant riboswitch class that selectively bind c-AMP-GMP. These RNAs constitute, to our knowledge, the first known specific receptors for c-AMP-GMP and reveal that this molecule is used by many bacteria to control specialized physiological processes.


Assuntos
Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica/fisiologia , Geobacter/metabolismo , Nucleotídeos Cíclicos/metabolismo , Aderência Bacteriana/fisiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Geobacter/genética , Nucleotídeos Cíclicos/genética , Óxidos/metabolismo , Vibrio cholerae
10.
Proc Natl Acad Sci U S A ; 112(8): E881-90, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675483

RESUMO

Cerebral amyloid angiopathy (CAA) is characterized by deposition of amyloid ß peptide (Aß) within walls of cerebral arteries and is an important cause of intracerebral hemorrhage, ischemic stroke, and cognitive dysfunction in elderly patients with and without Alzheimer's Disease (AD). NADPH oxidase-derived oxidative stress plays a key role in soluble Aß-induced vessel dysfunction, but the mechanisms by which insoluble Aß in the form of CAA causes cerebrovascular (CV) dysfunction are not clear. Here, we demonstrate evidence that reactive oxygen species (ROS) and, in particular, NADPH oxidase-derived ROS are a key mediator of CAA-induced CV deficits. First, the NADPH oxidase inhibitor, apocynin, and the nonspecific ROS scavenger, tempol, are shown to reduce oxidative stress and improve CV reactivity in aged Tg2576 mice. Second, the observed improvement in CV function is attributed both to a reduction in CAA formation and a decrease in CAA-induced vasomotor impairment. Third, anti-ROS therapy attenuates CAA-related microhemorrhage. A potential mechanism by which ROS contribute to CAA pathogenesis is also identified because apocynin substantially reduces expression levels of ApoE-a factor known to promote CAA formation. In total, these data indicate that ROS are a key contributor to CAA formation, CAA-induced vessel dysfunction, and CAA-related microhemorrhage. Thus, ROS and, in particular, NADPH oxidase-derived ROS are a promising therapeutic target for patients with CAA and AD.


Assuntos
Envelhecimento/patologia , Angiopatia Amiloide Cerebral/patologia , Angiopatia Amiloide Cerebral/fisiopatologia , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Sistema Vasomotor/fisiopatologia , Acetofenonas/farmacologia , Animais , Apolipoproteínas E/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Angiopatia Amiloide Cerebral/complicações , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Hemorragia Cerebral/complicações , Cricetinae , Óxidos N-Cíclicos/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/efeitos dos fármacos , Marcadores de Spin , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/patologia
11.
Physiol Genomics ; 49(2): 96-104, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011881

RESUMO

Gut dysbiosis has been linked to cardiovascular diseases including hypertension. We tested the hypothesis that hypertension could be induced in a normotensive strain of rats or attenuated in a hypertensive strain of rats by exchanging the gut microbiota between the two strains. Cecal contents from spontaneously hypertensive stroke prone rats (SHRSP) were pooled. Similarly, cecal contents from normotensive WKY rats were pooled. Four-week-old recipient WKY and SHR rats, previously treated with antibiotics to reduce the native microbiota, were gavaged with WKY or SHRSP microbiota, resulting in four groups; WKY with WKY microbiota (WKY g-WKY), WKY with SHRSP microbiota (WKY g-SHRSP), SHR with SHRSP microbiota (SHR g-SHRSP), and SHR with WKY microbiota (SHR g-WKY). Systolic blood pressure (SBP) was measured weekly using tail-cuff plethysmography. At 11.5 wk of age systolic blood pressure increased 26 mmHg in WKY g-SHRSP compared with that in WKY g-WKY (182 ± 8 vs. 156 ± 8 mmHg, P = 0.02). Although the SBP in SHR g-WKY tended to decrease compared with SHR g-SHRSP, the differences were not statistically significant. Fecal pellets were collected at 11.5 wk of age for identification of the microbiota by sequencing the 16S ribosomal RNA gene. We observed a significant increase in the Firmicutes:Bacteroidetes ratio in the hypertensive WKY g-SHRSP, as compared with the normotensive WKY g-WKY (P = 0.042). Relative abundance of multiple taxa correlated with SBP. We conclude that gut dysbiosis can directly affect SBP. Manipulation of the gut microbiota may represent an innovative treatment for hypertension.


Assuntos
Microbioma Gastrointestinal , Hipertensão/microbiologia , Animais , Biodiversidade , Pressão Sanguínea , Fezes/microbiologia , Hipertensão/fisiopatologia , Metaboloma , Filogenia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sístole
12.
Nat Chem Biol ; 9(12): 834-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24141192

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered bacterial second messenger implicated in the control of cell wall metabolism, osmotic stress responses and sporulation. However, the mechanisms by which c-di-AMP triggers these physiological responses have remained largely unknown. Notably, a candidate riboswitch class called ydaO associates with numerous genes involved in these same processes. Although a representative ydaO motif RNA recently was reported to weakly bind ATP, we report that numerous members of this noncoding RNA class selectively respond to c-di-AMP with subnanomolar affinity. Our findings resolve the mystery regarding the primary ligand for this extremely common riboswitch class and expose a major portion of the super-regulon of genes that are controlled by the widespread bacterial second messenger c-di-AMP.


Assuntos
Bacillus subtilis/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Riboswitch/fisiologia , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Conformação de Ácido Nucleico , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transdução de Sinais , Leveduras
13.
Bioorg Med Chem Lett ; 24(13): 2969-2971, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24857543

RESUMO

Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride.


Assuntos
Antibacterianos/farmacologia , Fluoretos/farmacologia , Gramicidina/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fluoretos/química , Gramicidina/síntese química , Gramicidina/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
14.
Res Sq ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38645258

RESUMO

Controllable and reproducible animal models of aneurysmal subarachnoid hemorrhage (SAH) are crucial for the systematic study of the pathophysiology and treatment of this debilitating condition. Despite the variety of animal models of SAH currently available, attempts to translate promising therapeutic strategies from preclinical studies to humans have largely failed. This failure is likely due, at least in part, to poor replication of pathology and disabilities in these preclinical models, especially the long-term neurocognitive deficits that drive poor quality of life / return to work in SAH survivors. Therefore, there is an unmet need to develop experimental models that reliably replicate the long-term clinical ramifications of SAH - especially in mice where genetic manipulations are straightforward and readily available. To address this need, we developed a standardized mouse model of SAH that reproducibly produced significant and trackable long-term neurobehavioral deficits. SAH was induced by performing double blood injections into the prechiasmatic cistern - a simple modification to the well-characterized single prechiasmatic injection mouse model of SAH. Following SAH, mice recapitulated key characteristics of SAH patients including long-term cognitive impairment as observed by a battery of behavioral testing and delayed pathophysiologic processes assayed by neuroinflammatory markers. We believe that this new SAH mouse model will be an ideal paradigm for investigating the complex pathophysiology of SAH and identifying novel druggable therapeutic targets for treating SAH-associated long-term neurocognitive deficits in patients.

15.
Diseases ; 11(4)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37873774

RESUMO

Delayed cerebral ischemia (DCI) is an important contributor to poor outcomes in aneurysmal subarachnoid hemorrhage (SAH) patients. We previously showed that volatile anesthetics such as isoflurane, sevoflurane and desflurane provided robust protection against SAH-induced DCI, but the impact of a more commonly used intravenous anesthetic agent, propofol, is not known. The goal of our current study is to examine the neurovascular protective effects of propofol on SAH-induced DCI. Twelve-week-old male wild-type mice were utilized for the study. Mice underwent endovascular perforation SAH or sham surgery followed one hour later by propofol infusion through the internal jugular vein (2 mg/kg/min continuous intravenous infusion). Large artery vasospasm was assessed three days after SAH. Neurological outcome assessment was performed at baseline and then daily until animal sacrifice. Statistical analysis was performed via one-way ANOVA and two-way repeated measures ANOVA followed by the Newman-Keuls multiple comparison test with significance set at p < 0.05. Intravenous propofol did not provide any protection against large artery vasospasm or sensory-motor neurological deficits induced by SAH. Our data show that propofol did not afford significant protection against SAH-induced DCI. These results are consistent with recent clinical studies that suggest that the neurovascular protection afforded by anesthetic conditioning is critically dependent on the class of anesthetic agent.

16.
J Am Heart Assoc ; 12(14): e029975, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37449587

RESUMO

Background Recent evidence implicates inflammation as a key driver in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage (SAH). Inducible nitric oxide synthase (iNOS) is one of the known major mediators of inflammation. We previously showed that an inhalational anesthetic, isoflurane, provides strong protection against delayed cerebral ischemia after SAH. Our current study aims to define the role of iNOS in isoflurane conditioning-induced protection against delayed cerebral ischemia in a mouse model of SAH. Methods and Results The experiments used 10- to 14-week-old male wild-type (C57BL/6) and iNOS global knockout mice. Anesthetic conditioning was initiated 1 hour after SAH with isoflurane 2% for 1 hour. Isoflurane-induced changes in iNOS expression were measured. N-(3-(aminomethyl) benzyl) acetamidine, a highly selective iNOS inhibitor, was injected intraperitoneally immediately after SAH and then daily. Vasospasm, microvessel thrombosis, and neurological assessment was performed. Data were analyzed by 1-way ANOVA and 2-way repeated measures ANOVA followed by Student Newman Keuls comparison test. Statistical significance was set at P<0.05. Isoflurane conditioning downregulated iNOS expression in naïve and SAH mice. N-(3-(aminomethyl) benzyl) acetamidine attenuated large artery vasospasm and microvessel thrombosis and improved neurological deficits in wild-type animals. iNOS knockout mice were significantly resistant to vasospasm, microvessel thrombosis, and neurological deficits induced by SAH. Combining isoflurane with N-(3-(aminomethyl) benzyl) acetamidine did not offer extra protection, nor did treating iNOS knockout mice with isoflurane. Conclusions Isoflurane conditioning-induced delayed cerebral ischemia protection appears to be mediated by downregulating iNOS. iNOS is a potential therapeutic target to improve outcomes after SAH.


Assuntos
Isquemia Encefálica , Isoflurano , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Camundongos , Masculino , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Isoflurano/farmacologia , Camundongos Endogâmicos C57BL , Isquemia Encefálica/prevenção & controle , Infarto Cerebral , Camundongos Knockout , Vasoespasmo Intracraniano/prevenção & controle
17.
Biomedicines ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189781

RESUMO

Delayed cerebral ischemia (DCI) is the largest treatable cause of poor outcome after aneurysmal subarachnoid hemorrhage (SAH). Nuclear Factor Kappa-light-chain-enhancer of Activated B cells (NF-kB), a transcription factor known to function as a pivotal mediator of inflammation, is upregulated in SAH and is pathologically associated with vasospasm. We previously showed that a brief exposure to isoflurane, an inhalational anesthetic, provided multifaceted protection against DCI after SAH. The aim of our current study is to investigate the role of NF-kB in isoflurane-conditioning-induced neurovascular protection against SAH-induced DCI. Twelve-week-old wild type male mice (C57BL/6) were divided into five groups: sham, SAH, SAH + Pyrrolidine dithiocarbamate (PDTC, a selective NF-kB inhibitor), SAH + isoflurane conditioning, and SAH + PDTC with isoflurane conditioning. Experimental SAH was performed via endovascular perforation. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. Three doses of PDTC (100 mg/kg) were injected intraperitoneally. NF-kB and microglial activation and the cellular source of NF-kB after SAH were assessed by immunofluorescence staining. Vasospasm, microvessel thrombosis, and neuroscore were assessed. NF-kB was activated after SAH; it was attenuated by isoflurane conditioning. Microglia was activated and found to be a major source of NF-kB expression after SAH. Isoflurane conditioning attenuated microglial activation and NF-kB expression in microglia after SAH. Isoflurane conditioning and PDTC individually attenuated large artery vasospasm and microvessel thrombosis, leading to improved neurological deficits after SAH. The addition of isoflurane to the PDTC group did not provide any additional DCI protection. These data indicate isoflurane-conditioning-induced DCI protection after SAH is mediated, at least in part, via downregulating the NF-kB pathway.

19.
Sci Rep ; 12(1): 8534, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595870

RESUMO

Gut dysbiosis, a pathological imbalance of bacteria, has been shown to contribute to the development of hypertension (HT), systemic- and neuro-inflammation, and blood-brain barrier (BBB) disruption in spontaneously hypertensive stroke prone rats (SHRSP). However, to date individual species that contribute to HT in the SHRSP model have not been identified. One potential reason, is that nearly all studies of the SHRSP gut microbiota have analyzed samples from rats with established HT. The goal of this study was to examine the SHRSP gut microbiota before, during, and after the onset of hypertension, and in normotensive WKY control rats over the same age range. We hypothesized that we could identify key microbes involved in the development of HT by comparing WKY and SHRSP microbiota during the pre-hypertensive state and longitudinally. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and fecal microbiota analyzed by16S rRNA gene sequencing. SHRSP showed significant elevations in SBP, as compared to WKY, beginning at 8 weeks of age (p < 0.05 at each time point). Bacterial community structure was significantly different between WKY and SHRSP as early as 4 weeks of age, and remained different throughout the study (p = 0.001-0.01). At the phylum level we observed significantly reduced Firmicutes and Deferribacterota, and elevated Bacteroidota, Verrucomicrobiota, and Proteobacteria, in pre-hypertensive SHRSP, as compared to WKY. At the genus level we identified 18 bacteria whose relative abundance was significantly different in SHRSP versus WKY at the pre-hypertensive ages of 4 or 6 weeks. In an attempt to further refine bacterial candidates that might contribute to the SHRSP phenotype, we compared the functional capacity of WKY versus SHRSP microbial communities. We identified significant differences in amino acid metabolism. Using untargeted metabolomics we found significant reductions in metabolites of the tryptophan-kynurenine pathway and increased indole metabolites in SHRSP versus WKY plasma. Overall, we provide further evidence that gut dysbiosis contributes to hypertension in the SHRSP model, and suggest for the first time the potential involvement of tryptophan metabolizing microbes.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Acidente Vascular Cerebral , Envelhecimento , Animais , Pressão Sanguínea/fisiologia , Disbiose , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Triptofano
20.
Nat Biotechnol ; 40(3): 402-410, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34608327

RESUMO

Prime editing enables the installation of virtually any combination of point mutations, small insertions or small deletions in the DNA of living cells. A prime editing guide RNA (pegRNA) directs the prime editor protein to the targeted locus and also encodes the desired edit. Here we show that degradation of the 3' region of the pegRNA that contains the reverse transcriptase template and the primer binding site can poison the activity of prime editing systems, impeding editing efficiency. We incorporated structured RNA motifs to the 3' terminus of pegRNAs that enhance their stability and prevent degradation of the 3' extension. The resulting engineered pegRNAs (epegRNAs) improve prime editing efficiency 3-4-fold in HeLa, U2OS and K562 cells and in primary human fibroblasts without increasing off-target editing activity. We optimized the choice of 3' structural motif and developed pegLIT, a computational tool to identify non-interfering nucleotide linkers between pegRNAs and 3' motifs. Finally, we showed that epegRNAs enhance the efficiency of the installation or correction of disease-relevant mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , DNA/genética , Edição de Genes/métodos , Humanos , RNA Guia de Cinetoplastídeos/genética , DNA Polimerase Dirigida por RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA