Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Chembiochem ; 24(5): e202200635, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484355

RESUMO

Benzoxazoles are important structural motifs in pharmaceutical drugs. Here, we present the heterologous production of 3-hydroxyanthranilate-derived benzoxazoles in the host bacterium Myxococcus xanthus following the expression of two genes from the nataxazole biosynthetic gene cluster of Streptomyces sp. Tü 6176. The M. xanthus expression strain achieved a benzoxazole titer of 114.6±7.4 mg L-1 upon precursor supplementation, which is superior to other bacterial production systems. Crosstalk between the heterologously expressed benzoxazole pathway and the endogenous myxochelin pathway led to the combinatorial biosynthesis of benzoxazoles featuring a 2,3-dihydroxybenzoic acid (2,3-DHBA) building block. Subsequent in vitro studies confirmed that this crosstalk is not only due to the availability of 2,3-DHBA in M. xanthus, rather, it is promoted by the adenylating enzyme MxcE from the myxochelin pathway, which contributes to the activation of aryl carboxylic acids and delivers them to benzoxazole biosynthesis.


Assuntos
Myxococcus xanthus , Streptomyces , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Streptomyces/metabolismo , Benzoxazóis/química , Benzoxazóis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770729

RESUMO

The natural product aurachin D is a farnesylated quinolone alkaloid, which is known to possess activity against the causative agent of malaria, Plasmodium spp. In this study, we show that aurachin D inhibits other parasitic protozoa as well. While aurachin D had only a modest effect on Trypanosoma brucei rhodesiense, two other trypanosomatids, T. cruzi and Leishmania donovani, were killed at low micromolar and nanomolar concentrations, respectively, in an in vitro assay. The determined IC50 values of aurachin D were even lower than those of the reference drugs benznidazole and miltefosine. Due to these promising results, we set out to explore the impact of structural modifications on the bioactivity of this natural product. In order to generate aurachin D derivatives with varying substituents at the C-2, C-6 and C-7 position of the quinolone ring system, we resorted to whole-cell biotransformation using a recombinant Escherichia coli strain capable of aurachin-type prenylations. Quinolone precursor molecules featuring methyl, methoxy and halogen groups were fed to this E. coli strain, which converted the substrates into the desired analogs. None of the generated derivatives exhibited improved antiprotozoal properties in comparison to aurachin D. Obviously, the naturally occurring aurachin D features already a privileged structure, especially for the inhibition of the causative agent of visceral leishmaniasis.


Assuntos
Antiprotozoários , Produtos Biológicos , Doença de Chagas , Leishmania donovani , Quinolonas , Trypanosoma cruzi , Humanos , Escherichia coli , Antiprotozoários/farmacologia , Antiprotozoários/química , Biotransformação , Quinolonas/farmacologia , Produtos Biológicos/farmacologia , Plasmodium falciparum , Testes de Sensibilidade Parasitária
3.
Beilstein J Org Chem ; 19: 909-917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377775

RESUMO

Siderophores are small molecules secreted by microorganisms in order to scavenge iron from the environment. An example is the thiazoline-containing natural product massiliachelin, which is produced by Massilia sp. NR 4-1 under iron-deficient conditions. Based on experimental evidence and genome analysis, it was suspected that this bacterium synthesizes further iron-chelating molecules. After a thorough inspection of its metabolic profile, six previously overlooked compounds were isolated that were active in the chrome azurol S (CAS) assay. Mass spectrometric measurements and nuclear magnetic resonance spectroscopic analyses identified these compounds as possible biosynthetic intermediates or shunt products of massiliachelin. Their bioactivity was tested against one Gram-positive and three Gram-negative bacteria.

4.
Beilstein J Org Chem ; 18: 360-367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422885

RESUMO

Four new phenolic siderophores were isolated from the actinomycete Nocardia altamirensis along with the known natural product amamistatin B and a putative biosynthetic shunt product. The structures of all compounds were elucidated through 1D and 2D NMR analyses as well as mass spectrometry. The iron-chelating properties of the retrieved metabolites were evaluated in a chrome azurol S assay.

5.
Microb Cell Fact ; 20(1): 161, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412657

RESUMO

As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.


Assuntos
Biossíntese Peptídica , Peptídeos/química , Policetídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Produtos Biológicos/metabolismo , Redes e Vias Metabólicas , Peptídeos/metabolismo , Policetídeo Sintases/metabolismo
6.
Nat Prod Rep ; 37(3): 464, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32104837

RESUMO

Correction for 'A genomics perspective on natural product biosynthesis in plant pathogenic bacteria' by Florian Baldeweg et al., Nat. Prod. Rep., 2019, 36, 307-325.

7.
Chembiochem ; 21(22): 3225-3228, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32633874

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that catalyzes the synthesis of the cyclic GMP-AMP dinucleotide 2'3'-cGAMP. 2'3'-cGAMP functions as inducer for the production of type I interferons. Derivatives of this important second messenger are highly valuable for pharmaceutical applications. However, the production of these analogues requires complex, multistep syntheses. Herein, human cGAS is shown to react with a series of unnatural nucleotides, thus leading to novel cyclic dinucleotides. Most substrate derivatives with modifications at the nucleobase, ribose, and the α-thio phosphate were accepted. These results demonstrate the catalytic promiscuity of human cGAS and its utility for the biocatalytic synthesis of cyclic dinucleotide derivatives.


Assuntos
Nucleotídeos Cíclicos/biossíntese , Nucleotidiltransferases/metabolismo , Biocatálise , Humanos , Conformação de Ácido Nucleico , Nucleotídeos Cíclicos/química , Nucleotidiltransferases/química
8.
Chembiochem ; 21(16): 2268-2273, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32216075

RESUMO

Enzyme promiscuity has important implications in the field of biocatalysis. In some cases, structural analogues of simple metabolic building blocks can be processed through entire pathways to give natural product derivatives that are not readily accessible by chemical means. In this study, we explored the plasticity of the aurachin biosynthesis pathway with regard to using fluoro- and chloroanthranilic acids, which are not abundant in the bacterial producers of these quinolone antibiotics. The incorporation rates of the tested precursor molecules disclosed a regiopreference for halogen substitution as well as steric limitations of enzymatic substrate tolerance. Three previously undescribed fluorinated aurachin derivatives were produced in preparative amounts by fermentation and structurally characterized. Furthermore, their antibacterial activities were evaluated in comparison to their natural congener aurachin D.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Halogenação , Quinolonas/química , Quinolonas/metabolismo , Stigmatella aurantiaca/metabolismo
9.
Nat Prod Rep ; 36(2): 307-325, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30063232

RESUMO

Covering: up to February 2018 In recent years, genome sequencing revealed the full biosynthetic potential of bacteria causing plant diseases. Bioinformatics and advanced analytical techniques paved the way to clarify the structures of long-sought natural products with a role in virulence. Furthermore, several compounds without disease-associated function were discovered. The exploration of these molecules disclosed persistence strategies of plant pathogenic bacteria outside their hosts and provided access to new bioactive compounds with therapeutic potential. In this review, we will summarize some of the striking findings in the field, paying particular attention to unique natural product pathways and their unprecedented biosynthetic features as well as the biological activities of the retrieved compounds.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Produtos Biológicos/metabolismo , Plantas/microbiologia , Bactérias/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/patogenicidade , Genoma Bacteriano , Genômica/métodos , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidade , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/patogenicidade , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
10.
Biometals ; 32(1): 77-88, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30474772

RESUMO

Cupriachelin is a photoreactive lipopeptide siderophore produced by the freshwater bacterium Cupriavidus necator H16. In the presence of sunlight, the iron-loaded siderophore undergoes photolytic cleavage, thereby releasing solubilized iron into the environment. This iron is not only available to the siderophore producer, but also to the surrounding microbial community. In this study, the cupriachelin-based interaction between C. necator H16 and the freshwater diatom Navicula pelliculosa was investigated. A reporter strain of the bacterium was constructed to study differential expression levels of the cupriachelin biosynthesis gene cucJ in response to varying environmental conditions. Not only iron starvation, but also culture supernatants of N. pelliculosa were found to induce cupriachelin biosynthesis. The transcription factors involved in this differential gene expression were identified using DNA-protein pulldown assays. Besides the well-characterized ferric uptake regulator, a two-component system was found to tune the expression of cupriachelin biosynthesis genes in the presence of diatom supernatants.


Assuntos
Cupriavidus necator/metabolismo , Diatomáceas/metabolismo , Água Doce/microbiologia , Sideróforos/biossíntese , Conformação Molecular , Sideróforos/química
11.
J Nat Prod ; 82(9): 2544-2549, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31465225

RESUMO

Precursor-directed biosynthesis was used to introduce selected aryl carboxylic acids into the pseudochelin pathway, which had recently been assembled in Myxococcus xanthus. Overall, 14 previously undescribed analogues of the natural products myxochelin B and pseudochelin A were generated and structurally characterized. A subset of 10 derivatives together with their parental molecules were evaluated for their activity toward human 5-lipoxygenase. This testing revealed pseudochelin A as the most potent 5-lipoxygenase inhibitor among the naturally occurring compounds, whereas myxochelin A is the least active. Replacement of the catechol moieties in myxochelin B and pseudochelin A affected the bioactivity to different degrees.


Assuntos
Proteínas de Bactérias/farmacologia , Catecóis/farmacologia , Engenharia Genética , Inibidores de Lipoxigenase/farmacologia , Lisina/análogos & derivados , Myxococcus xanthus/química , Humanos , Inibidores de Lipoxigenase/isolamento & purificação , Lisina/farmacologia , Myxococcus xanthus/genética
12.
Appl Microbiol Biotechnol ; 103(23-24): 9619-9631, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686146

RESUMO

Type I polyketide synthases (PKSs) are large multi-domain proteins converting simple acyl-CoA thioesters such as acetyl-CoA and malonyl-CoA to a large diversity of biotechnologically interesting molecules. Such multi-step reaction cascades are of particular interest for applications in engineered microbial cell factories, as the introduction of a single protein with many enzymatic activities does not require balancing of several individual enzymatic activities. However, functional introduction of type I PKSs into heterologous hosts is very challenging as the large polypeptide chains often do not fold properly. In addition, PKS usually require post-translational activation by dedicated 4'-phosphopantetheinyl transferases (PPTases). Here, we introduce an engineered Corynebacterium glutamicum strain as a novel microbial cell factory for type I PKS-derived products. Suitability of C. glutamicum for polyketide synthesis could be demonstrated by the functional introduction of the 6-methylsalicylic acid synthase ChlB1 from Streptomyces antibioticus. Challenges related to protein folding could be overcome by translation fusion of ChlB1Sa to the C-terminus of the maltose-binding protein MalE from Escherichia coli. Surprisingly, ChlB1Sa was also active in the absence of a heterologous PPTase, which finally led to the discovery that the endogenous PPTase PptACg of C. glutamicum can also activate ChlB1Sa. The best strain, engineered to provide increased levels of acetyl-CoA and malonyl-CoA, accumulated up to 41 mg/L (0.27 mM) 6-methylsalicylic acid within 48 h of cultivation. Further experiments showed that PptACg of C. glutamicum can also activate nonribosomal peptide synthetases (NRPSs), rendering C. glutamicum a promising microbial cell factory for the production of several fine chemicals and medicinal drugs.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Salicilatos/metabolismo , Escherichia coli/metabolismo , Microbiologia Industrial , Engenharia Metabólica/métodos , Streptomyces antibioticus/enzimologia
13.
Beilstein J Org Chem ; 15: 1298-1303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293678

RESUMO

A putative siderophore locus was detected in the genome of the violacein-producing bacterium Massilia sp. NR 4-1 and predicted to direct the biosynthesis of a molecule that is structurally related to the thiazoline-containing siderophore micacocidin. In order to track this compound, we analyzed the metabolic profiles of Massilia cultures grown under different iron concentrations. A compound which was found to be predominantly produced under iron deficiency was subsequently isolated. Its structural characterization by spectroscopic and bioinformatic analyses revealed a previously not known diastereomer of the cytotoxic alkaloid agrochelin. The structure of this natural product, which was named massiliachelin, corresponds to the assembly line encoded by the identified siderophore locus.

14.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217842

RESUMO

Myxobacteria utilize the catechol natural products myxochelin A and B in order to maintain their iron homeostasis. Recently, the production of these siderophores, along with a new myxochelin derivative named pseudochelin A, was reported for the marine bacterium Pseudoalteromonas piscicida S2040. The latter derivative features a characteristic imidazoline moiety, which was proposed to originate from an intramolecular condensation reaction of the ß-aminoethyl amide group in myxochelin B. To identify the enzyme catalyzing this conversion, we compared the myxochelin regulons of two myxobacterial strains that produce solely myxochelin A and B with those of P. piscicida S2040. This approach revealed a gene exclusive to the myxochelin regulon in P. piscicida S2040, coding for an enzyme of the amidohydrolase superfamily. To prove that this enzyme is indeed responsible for the postulated conversion, the reaction was reconstituted in vitro using a hexahistidine-tagged recombinant protein made in Escherichia coli, with myxochelin B as the substrate. To test the production of pseudochelin A under in vivo conditions, the amidohydrolase gene was cloned into the myxobacterial plasmid pZJY156 and placed under the control of a copper-inducible promoter. The resulting vector was introduced into the myxobacterium Myxococcus xanthus DSM 16526, a native producer of myxochelin A and B. Following induction with copper, the myxobacterial expression strain was found to synthesize small quantities of pseudochelin A. Replacement of the copper-inducible promoter with the constitutive pilA promoter led to increased production levels in M. xanthus, which facilitated the isolation and subsequent structural verification of the heterologously produced compound.IMPORTANCE In this study, an enzyme for imidazoline formation in pseudochelin biosynthesis was identified. Evidence for the involvement of this enzyme in the postulated reaction was obtained after in vitro reconstitution. Furthermore, the function of this enzyme was demonstrated in vivo by transferring the corresponding gene into the bacterium Myxococcus xanthus, which thereby became a producer of pseudochelin A. In addition to clarifying the molecular basis of imidazoline formation in siderophore biosynthesis, we describe the heterologous expression of a gene in a myxobacterium without chromosomal integration. Due to its metabolic proficiency, M. xanthus represents an interesting alternative to established host systems for the reconstitution and manipulation of biosynthetic pathways. Since the plasmid used in this study is easily adaptable for the expression of other enzymes as well, we expand the conventional expression strategy for myxobacteria, which is based on the integration of biosynthetic genes into the host genome.


Assuntos
Lisina/análogos & derivados , Myxococcus xanthus/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Catecóis/química , Catecóis/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Lisina/biossíntese , Lisina/química , Myxococcus xanthus/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Regulon
15.
Int J Syst Evol Microbiol ; 67(7): 2476-2481, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28741992

RESUMO

Three filamentous gliding bacteria from the German Collection of Microorganisms and Cell Cultures, Hp g11, Hp g471 and Hp g472, were subjected to a phylogenetic analysis. These organisms had previously been classified as members of the genus Herpetosiphon based on their growth physiology and morphology. However, a taxonomic assignment at the species level had not been carried out. Analysis of 16S rRNA sequences now confirmed the close relationship of strain Hp g472 to Herpetosiphon aurantiacus DSM 785T (98.6 % nucleotide identity) and Herpetosiphon geysericola DSM 7119T (97.7 %). The results of DNA-DNA hybridization experiments further implied that strain Hp g472 should be classified as a distinct species. The DNA G+C content of strain Hp g472 was 49.9 mol%. The major quinone was MK-10 and the predominant cellular fatty acids were C18 : 1, C16 : 1 and C16 : 0. Based on phenotypic, chemotaxonomic and phylogenetic data it was concluded that strain Hp g472 represents a novel species of the genus Herpetosiphon, for which the name Herpetosiphon gulosus sp. nov. is proposed. The type strain is Hp g472T (=DSM 52871T=NBRC 112829T). In contrast to Hp g472T, the strains Hp g11 and Hp g471 exhibited closest 16S rRNA gene sequence similarity (>99 %) with 'Herpetosiphon giganteus' Hp a2. The distinctive genotypic and phenotypic properties of the latter supported the revival of the name as Herpetosiphon giganteus (ex Reichenbach & Golecki, 1975) sp. nov., nom. rev. We propose the previously deposited reference strain DSM 589T=NBRC 112828T as the type strain.


Assuntos
Chloroflexi/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Chloroflexi/genética , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Nepal , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Dióxido de Silício , Ubiquinona/química
16.
Angew Chem Int Ed Engl ; 56(21): 5937-5941, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28440038

RESUMO

The antilarval mushroom polyenes 18-methyl-19-oxoicosaoctaenoic acid and 20-methyl-21-oxodocosanonaenoic acid appear in response to injury of the mycelium of the stereaceous mushroom BY1. We identified a polyketide synthase (PPS1) which belongs to a hitherto completely uncharacterized clade of polyketide synthases. Expression of the PPS1 gene is massively upregulated following mycelial damage. The synthesis of the above polyenes was reconstituted in the mold Aspergillus niger as a heterologous host. This demonstrates that PPS1 1) synchronously produces branched-chain polyketides of varied lengths, and 2) catalyzes the unprecedented shift of eight or nine double bonds. This study represents the first characterization of a reducing polyketide synthase from a mushroom. We also show that injury-induced de novo synthesis of polyketides is a fungal response strategy.


Assuntos
Agaricales , Polienos/química , Amida Sintases/química , Interações Hospedeiro-Parasita , Estrutura Molecular
17.
Beilstein J Org Chem ; 13: 2458-2465, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234472

RESUMO

The genome of the predatory bacterium Herpetosiphon aurantiacus 114-95T harbors a number of biosynthesis genes, including four terpene cyclase genes. To identify the terpenes biosynthesized from H. aurantiacus 114-95T, we fed the strain with 13C-labeled glucose and, subsequently, searched for characteristic mass shifts in its metabolome. This approach led to the discovery of a new natural product, of which the isotope pattern is indicative for a diterpene originating from the methylerythritol phosphate pathway. After large-scale fermentation of H. aurantiacus 114-95T, the putative diterpene was isolated in sufficient quantity to enable NMR-based structure elucidation. The compound, for which the name herpetopanone is proposed, features a rare octahydro-1H-indenyl skeleton. Herpetopanone bears resemblance to cadinane-type sesquiterpenes from plants, but is structurally entirely unprecedented in bacteria. Based on its molecular architecture, a possible biosynthetic pathway is postulated.

18.
Chembiochem ; 17(19): 1813-1817, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27442960

RESUMO

S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species.


Assuntos
Amidas/metabolismo , Aspergillus fumigatus/metabolismo , Fumaratos/metabolismo , Metiltransferases/metabolismo , Amidas/química , Aspergillus fumigatus/química , Biocatálise , Fumaratos/química , Metilação , Metiltransferases/genética , Estrutura Molecular
19.
Org Biomol Chem ; 14(35): 8212-27, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27492756

RESUMO

Almost all life forms depend on iron as an essential micronutrient that is needed for electron transport and metabolic processes. Siderophores are low-molecular-weight iron chelators that safeguard the supply of this important metal to bacteria, fungi and graminaceous plants. Although animals and the majority of plants do not utilise siderophores and have alternative means of iron acquisition, siderophores have found important clinical and agricultural applications. In this review, we will highlight the different uses of these iron-chelating molecules.


Assuntos
Quelantes de Ferro/química , Quelantes de Ferro/metabolismo , Sideróforos/química , Sideróforos/metabolismo , Antibacterianos/administração & dosagem , Bactérias/metabolismo , Biodegradação Ambiental , Terapia por Quelação/métodos , Portadores de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Fungos/metabolismo , Quelantes de Ferro/farmacologia , Plantas/metabolismo , Sideróforos/farmacologia , Propriedades de Superfície
20.
J Nat Prod ; 79(4): 865-72, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27023373

RESUMO

Photoreactive siderophores have a major impact on the growth of planktonic organisms. To date, these molecules have mainly been reported from marine bacteria, although evidence is now accumulating that some terrestrial bacteria also harbor the biosynthetic potential for their production. In this paper, we describe the genomics-driven discovery and characterization of variochelins, lipopeptide siderophores from the bacterium Variovorax boronicumulans, which thrives in soil and freshwater habitats. Variochelins are different from most other lipopeptide siderophores in that their biosynthesis involves a polyketide synthase. We demonstrate that the ferric iron complex of variochelin A possesses photoreactive properties and present the MS-derived structures of two degradation products that emerge upon light exposure.


Assuntos
Genômica/métodos , Lipopeptídeos/isolamento & purificação , Policetídeo Sintases/metabolismo , Sideróforos/isolamento & purificação , Bactérias/metabolismo , Lipopeptídeos/química , Biologia Marinha , Estrutura Molecular , Sideróforos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA