Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Autoimmun ; 134: 102960, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470209

RESUMO

CD72 is a regulatory co-receptor on B cells, with a role in the pathogenesis of systemic lupus erythematosus (SLE) in both human and animal models. Semaphorin3A (sema3A) is a secreted member of the semaphorin family that can reconstruct B cells' regulatory functions by upregulating IL-10 expression and inhibiting the pro-inflammatory activity of B and T cells in autoimmune diseases. The aim of our present study was to identify a new ligand for CD72, namely sema3A, and exploring the signal transduction pathways following its ligation in B cells. We established that CD72 functions as sema3A binding and signal-transducing receptor. These functions of CD72 are independent of neuropilin-1 (NRP-1) (the known sema3A receptor). We discovered that sema3A induces the phosphorylation of CD72 on tyrosine residues and the association of CD72 with SHP-1 and SHP-2. In addition, the binding of sema3A to CD72 on B cells inhibits the phosphorylation of STAT-4 and HDAC-1 and induces the phosphorylation of p38-MAPK and PKC-theta in B-cells derived B-lymphoblastoid (BLCL) cells, and in primary B-cells isolated from either healthy donors or SLE patients. We concluded that sema3A is a functional regulatory ligand for CD72 on B cells. The sema3A-CD72 axis is a crucial regulatory pathway in the pathogenesis of autoimmune and inflammatory diseases namely SLE, and modulation of this pathway may have a potential therapeutic value for autoimmune diseases.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Animais , Humanos , Semaforina-3A/metabolismo , Semaforina-3A/uso terapêutico , Ligantes , Doenças Autoimunes/metabolismo , Linfócitos B , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/uso terapêutico , Antígenos CD/metabolismo
2.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682926

RESUMO

The five genes of the lysyl oxidase family encode enzymes that covalently cross-link components of the extracellular matrix, such as various types of collagen and elastin, and, thus, promote the stabilization of extracellular matrixes. Several of these genes, in particular lysyl oxidase (LOX) and lysyl oxidase like-2 (LOXL2) were identified as genes that are upregulated by hypoxia, and promote tumor cells invasion and metastasis. Here, we focus on the description of the diverse molecular mechanisms by which the various lysyl oxidases affect tumor progression. We also describe attempts that have been made, and are still on-going, that focus on the development of efficient lysyl oxidase inhibitors for the treatment of various forms of cancer, and of diseases associated with abnormal fibrosis.


Assuntos
Neoplasias , Proteína-Lisina 6-Oxidase , Aminoácido Oxirredutases/genética , Colágeno , Matriz Extracelular , Humanos , Neoplasias/genética , Proteína-Lisina 6-Oxidase/genética
3.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232621

RESUMO

The five lysyl-oxidase genes share similar enzymatic activities and contribute to tumor progression. We have knocked out the five lysyl-oxidase genes in MDA-MB-231 breast cancer cells using CRISPR/Cas9 in order to identify genes that are regulated by LOX but not by other lysyl-oxidases and in order to study such genes in more mechanistic detail in the future. Re-expression of the full-length cDNA encoding LOX identified four genes whose expression was downregulated in the knock-out cells and rescued following LOX re-expression but not re-expression of other lysyl-oxidases. These were the AGR2, STOX2, DNAJB11 and DNAJC3 genes. AGR2 and STOX2 were previously identified as promoters of tumor progression. In addition, we identified several genes that were not downregulated in the knock-out cells but were strongly upregulated following LOX or LOXL3 re-expression. Some of these, such as the DERL3 gene, also promote tumor progression. There was very little proteolytic processing of the re-expressed LOX pro-enzyme in the MDA-MB-231 cells, while in the HEK293 cells, the LOX pro-enzyme was efficiently cleaved. We introduced point mutations into the known BMP-1 and ADAMTS2/14 cleavage sites of LOX. The BMP-1 mutant was secreted but not cleaved, while the LOX double mutant dmutLOX was not cleaved or secreted. However, even in the presence of the irreversible LOX inhibitor ß-aminoproprionitrile (BAPN), these point-mutated LOX variants induced the expression of these genes, suggesting that the LOX pro-enzyme has hitherto unrecognized biological functions.


Assuntos
Aminopropionitrilo , Neoplasias , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , DNA Complementar , Células HEK293 , Humanos , Mucoproteínas , Proteínas Oncogênicas , Proteína-Lisina 6-Oxidase/metabolismo
4.
J Cell Sci ; 131(9)2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29661844

RESUMO

Class-3 semaphorin guidance factors bind to receptor complexes containing neuropilin and plexin receptors. A semaphorin may bind to several receptor complexes containing somewhat different constituents, resulting in diverse effects on cell migration. U87MG glioblastoma cells express both neuropilins and the four class-A plexins. Here, we show that these cells respond to Sema3A or Sema3B by cytoskeletal collapse and cell contraction but fail to contract in response to Sema3C, Sema3D, Sema3G or Sema3E, even when class-A plexins are overexpressed in the cells. In contrast, expression of recombinant plexin-D1 enabled contraction in response to these semaphorins. Surprisingly, unlike Sema3D and Sema3G, Sema3C also induced the contraction and repulsion of plexin-D1-expressing U87MG cells in which both neuropilins were knocked out using CRISPR/Cas9. In the absence of neuropilins, the EC50 of Sema3C was 5.5 times higher, indicating that the neuropilins function as enhancers of plexin-D1-mediated Sema3C signaling but are not absolutely required for Sema3C signal transduction. Interestingly, in the absence of neuropilins, plexin-A4 formed complexes with plexin-D1, and was required in addition to plexin-D1 to enable Sema3C-induced signal transduction.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Citoesqueleto/metabolismo , Neuropilinas/deficiência , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Neuropilinas/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696103

RESUMO

Abstract: Semaphorins are the products of a large gene family containing 28 genes of which 21 are found in vertebrates. Class-3 semaphorins constitute a subfamily of seven vertebrate semaphorins which differ from the other vertebrate semaphorins in that they are the only secreted semaphorins and are distinguished from other semaphorins by the presence of a basic domain at their C termini. Class-3 semaphorins were initially characterized as axon guidance factors, but have subsequently been found to regulate immune responses, angiogenesis, lymphangiogenesis, and a variety of additional physiological and developmental functions. Most class-3 semaphorins transduce their signals by binding to receptors belonging to the neuropilin family which subsequently associate with receptors of the plexin family to form functional class-3 semaphorin receptors. Recent evidence suggests that class-3 semaphorins also fulfill important regulatory roles in multiple forms of cancer. Several class-3 semaphorins function as endogenous inhibitors of tumor angiogenesis. Others were found to inhibit tumor metastasis by inhibition of tumor lymphangiogenesis, by direct effects on the behavior of tumor cells, or by modulation of immune responses. Notably, some semaphorins such as sema3C and sema3E have also been found to potentiate tumor progression using various mechanisms. This review focuses on the roles of the different class-3 semaphorins in tumor progression.


Assuntos
Progressão da Doença , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Animais , Humanos , Neoplasias/genética , Neuropilinas/química , Neuropilinas/metabolismo , Receptores de Superfície Celular/genética
6.
Carcinogenesis ; 39(10): 1283-1291, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102336

RESUMO

Previous studies revealed that progression of multiple myeloma (MM) is associated with downregulation of semaphorin-3A (sema3A) expression in bone marrow endothelial cells. We therefore determined if serum sema3A concentrations are correlated with MM progression and if sema3A can affect MM progression. We find that the concentration of sema3A in sera of MM patients is strongly reduced and that the decrease is correlated with disease progression. A similar depletion is found in patients having acute myeloid leukemia and acute lymphoblastic leukemia but not in cancer forms that do not involve the bone marrow such as in colon cancer. Expression of a modified sema3A [furin-resistant sema3A (FR-sema3A)] stabilized against cleavage by furin-like proprotein convertases in CAG MM cells did not affect their behavior in-vitro. CAG cells injected into the tail vein of severe combined immunodeficient (SCID) mice home to the bone marrow and proliferate, mimicking MM disease progression. Disease progression in mice injected with CAG cells expressing FR-sema3A was inhibited, resulting in prolonged survival and a lower incidence of bone lesions. Histological examination and fluorescence-activated cell sorting analysis revealed that FR-sema3A expression reduced the infiltration of the CAG cells into the bone marrow, reduced bone marrow necrosis and reduced angiogenesis induced by the MM cells in the bone marrow. Our results suggest that measurement of sema3A serum concentrations may be of use for the diagnosis and for the monitoring of malignancies of the bone marrow such as MM. Furthermore, our results suggest that FR-sema3A may perhaps find use as an inhibitor of MM disease progression.


Assuntos
Medula Óssea/patologia , Mieloma Múltiplo/sangue , Semaforina-3A/sangue , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID/metabolismo , Mieloma Múltiplo/patologia , Semaforina-3A/metabolismo
7.
Drug Resist Updat ; 29: 1-12, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27912840

RESUMO

The semaphorins were initially characterized as repulsive axon guidance factors. However, they are currently also recognized as important regulators of diverse biological processes which include regulation of immune responses, angiogenesis, organogenesis, and a variety of additional physiological and developmental functions. The semaphorin family consists of more than 20 genes divided into seven subfamilies, all of which contain the sema domain signature. They usually transduce signals by activation of receptors belonging to the plexin family, either directly, or indirectly following the binding of some semaphorins to receptors of the neuropilin family which subsequently associate with plexins. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signalling, and can strongly influence the nature of the biological responses of cells to semaphorins. Recent evidence suggests that semaphorins play important roles in the etiology of multiple forms of cancer. Some semaphorins such as some semaphorins belonging to the class-3 semaphorin subfamily, have been found to function as bona fide tumor suppressors and to inhibit tumor progression by various mechanisms. Because these class-3 semaphorins are secreted proteins, these semaphorins may potentially be used as anti-tumorigenic drugs. Other semaphorins, such as semaphorin-4D, function as inducers of tumor progression and represent targets for the development of novel anti-tumorigenic drugs. The mechanisms by which semaphorins affect tumor progression are diverse, ranging from direct effects on tumor cells to modulation of accessory processes such as modulation of immune responses and inhibition or promotion of tumor angiogenesis and tumor lymphangiogenesis. This review focuses on the diverse mechanisms by which semaphorins affect tumor progression.


Assuntos
Moléculas de Adesão Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neovascularização Patológica/genética , Proteínas do Tecido Nervoso/genética , Neuropilinas/genética , Semaforinas/genética , Animais , Moléculas de Adesão Celular/classificação , Moléculas de Adesão Celular/imunologia , Progressão da Doença , Humanos , Vasos Linfáticos/imunologia , Vasos Linfáticos/patologia , Linfócitos/imunologia , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/imunologia , Neuropilinas/classificação , Neuropilinas/imunologia , Domínios Proteicos , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Semaforinas/classificação , Semaforinas/imunologia , Transdução de Sinais
8.
J Cell Sci ; 127(Pt 24): 5240-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25335892

RESUMO

Class 3 semaphorins are anti-angiogenic and anti-tumorigenic guidance factors that bind to neuropilins, which, in turn, associate with class A plexins to transduce semaphorin signals. To study the role of the plexin-A2 receptor in semaphorin signaling, we silenced its expression in endothelial cells and in glioblastoma cells. The silencing did not affect Sema3A signaling, which depended on neuropilin-1, plexin-A1 and plexin-A4, but completely abolished Sema3B signaling, which also required plexin-A4 and one of the two neuropilins. Interestingly, overexpression of plexin-A2 in plexin-A1- or plexin-A4-silenced cells restored responses to both semaphorins, although it nullified their ability to differentiate between them, suggesting that, when overexpressed, plexin-A2 can functionally replace other class A plexins. By contrast, although plexin-A4 overexpression restored Sema3A signaling in plexin-A1-silenced cells, it failed to restore Sema3B signaling in plexin-A2-silenced cells. It follows that the identity of plexins in functional semaphorin receptors can be flexible depending on their expression level. Our results suggest that changes in the expression of plexins induced by microenvironmental cues can trigger differential responses of different populations of migrating cells to encountered gradients of semaphorins.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Inativação Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Modelos Biológicos , Neuropilina-1/metabolismo
9.
Exp Eye Res ; 153: 186-194, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27725196

RESUMO

Abnormal subretinal choroidal neovascularization (CNV) is a major cause of blindness in exudative age-related macular degeneration (AMD). Current anti-angiogenic treatments by VEGF sequestering agents have been successful, but a significant proportion of patients do not respond well to these treatments, and the response of others diminishes over time, suggesting that additional anti-angiogenic agents that function by separate mechanisms may be of use to such patients. We have previously found that a point mutated form of semaphorin-3E resistant to cleavage by furin like pro-protein convertases (UNCL-Sema3E) displays potent anti-angiogenic properties. We therefore determined if UNCL-Sema3E has potential as an inhibitor of CNV formation. We chose to study UNCL-Sema3E rather than wild type sema3E because unlike full length sema3E, the major p61-Sema3E peptide that is produced by cleavage of sema3E with furin like pro-protein convertases activates signal transduction mediated by the ErbB2 receptor and can promote tumor metastasis in addition to its anti-angiogenic activity. UNCL-Sema3E inhibited efficiently vascular endothelial growth factor-A (VEGF), platelet derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) signaling in human umbilical vein derived endothelial cells (HUVEC) and to a lesser extent hepatocyte growth factor (HGF) signal transduction. CNV that was induced in the eyes of C57 black mice by laser photocoagulation was inhibited by 65% (P < 0.01) following a single bolus intra-vitreal injection of 5 µg UNCL-Sema3E. This inhibitory effect was similar to the inhibition produced by a single bolus intra-vitreal injection of 5 µg aflibercept. A similar inhibition of CNV was observed following the injection of UNCL-Sema3E into the eyes of Long-Evans rats. However, a higher dose of UNCL-Sema3E (125 µg), partially due to the larger volume of the vitreous cavity of rats, was required to achieve maximal inhibition of CNV. Injection of UNCL-Sema3E into eyes of healthy mice did not have any adverse effect on retinal function as assessed by optic kinetic reflex (OKR) or by electroretinogram (ERG) assays nor did UNCL-Sema3E injection affect the structure of the retina as determined using histology. To conclude, our results suggest that UNCL-Sema3E may be useful for the treatment of exudative AMD, which does not respond well to conventional anti-VEGF therapy.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Glicoproteínas/administração & dosagem , Proteínas de Membrana/administração & dosagem , Mutação Puntual , Proteínas de Ligação a RNA/administração & dosagem , Animais , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Glicoproteínas/genética , Humanos , Injeções Intravítreas , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Ratos , Ratos Long-Evans , Semaforinas
10.
Circ Res ; 110(1): 34-46, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22076636

RESUMO

RATIONALE: Positive signals, such as vascular endothelial growth factor, direct endothelial cells (ECs) to specific locations during blood vessel formation. Less is known about repulsive signal contribution to shaping vessels. Recently, "neuronal guidance cues" have been shown to influence EC behavior, particularly in directing sprouting angiogenesis by repelling ECs. However, their role during de novo blood vessel formation remains unexplored. OBJECTIVE: To identify signals that guide and pattern the first mammalian blood vessels. METHODS AND RESULTS: Using genetic mouse models, we show that blood vessels are sculpted through the generation of stereotyped avascular zones by EC-repulsive cues. We demonstrate that Semaphorin3E (Sema3E) is a key factor that shapes the paired dorsal aortae in mouse, as sema3E(-/-) embryos develop an abnormally branched aortic plexus with a markedly narrowed avascular midline. In vitro cultures and avian grafting experiments show strong repulsion of ECs by Sema3E-expressing cells. We further identify the mouse notochord as a rich source of multiple redundant neuronal guidance cues. Mouse embryos that lack notochords fail to form cohesive aortic vessels because of loss of the avascular midline, yet maintain lateral avascular zones. We demonstrate that lateral avascular zones are directly generated by the lateral plate mesoderm, a critical source of Sema3E. CONCLUSIONS: These findings demonstrate that Sema3E-generated avascular zones are critical regulators of mammalian cardiovascular patterning and are the first to identify a repulsive role for the lateral plate mesoderm. Integration of multiple, and in some cases redundant, repulsive cues from various tissues is critical to patterning the first embryonic blood vessels.


Assuntos
Vasos Sanguíneos/embriologia , Embrião de Mamíferos/irrigação sanguínea , Endotélio Vascular/embriologia , Glicoproteínas/fisiologia , Proteínas de Membrana/fisiologia , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Animais , Aorta/citologia , Aorta/embriologia , Vasos Sanguíneos/citologia , Células Cultivadas , Proteínas do Citoesqueleto , Endotélio Vascular/citologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Glicoproteínas/deficiência , Glicoproteínas/genética , Fator 3-beta Nuclear de Hepatócito/deficiência , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/fisiologia , Técnicas In Vitro , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Camundongos Knockout , Modelos Animais , Notocorda/citologia , Notocorda/embriologia , Semaforinas
11.
Mol Cell Neurosci ; 56: 186-200, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23665579

RESUMO

In the adult rodent brain, subsets of neurons are surrounded by densely organised extracellular matrix called perineuronal nets (PNNs). PNNs consist of hyaluronan, tenascin-R, chondroitin sulphate proteoglycans (CSPGs), and the link proteins Crtl1 and Bral2. PNNs restrict plasticity at the end of critical periods and can be visualised with Wisteria floribunda agglutinin (WFA). Using a number of antibodies raised against the different regions of semaphorin3A (Sema3A) we demonstrate that this secreted chemorepulsive axon guidance protein is localised to WFA-positive PNNs around inhibitory interneurons in the cortex and several other PNN-bearing neurons throughout the brain and co-localises with aggrecan, versican, phosphacan and tenascin-R. Chondroitinase ABC (ChABC) was injected in the cortex to degrade glycosaminoglycans (GAGs) from the CSPGs, abolishing WFA staining of PNNs around the injection site. Sema3A-positive nets were no longer observed in the area devoid of WFA staining. In mice lacking the link protein Crtl1 in the CNS only vestigial PNNs are present, and in these mice there were no Sema3A-positive PNN structures. A biochemical analysis shows that Sema3A protein binds with high-affinity to CS-GAGs and aggrecan and versican extracted from PNNs in the adult rat brain, and a significant proportion of Sema3A is retrieved in brain extracts that are enriched in PNN-associated GAGs. The Sema3A receptor components PlexinA1 and A4 are selectively expressed by inhibitory interneurons in the cortex that are surrounded by Sema3A positive PNNs. We conclude that the chemorepulsive axon guidance molecule Sema3A is present in PNNs of the adult rodent brain, bound to the GAGs of the CSPGs. These observations suggest a novel concept namely that chemorepulsive axon guidance molecules like Sema3A may be important functional attributes of PNNs in the adult brain.


Assuntos
Córtex Cerebral/metabolismo , Matriz Extracelular/metabolismo , Semaforina-3A/metabolismo , Agrecanas/metabolismo , Animais , Córtex Cerebral/citologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteoglicanas/genética , Proteoglicanas/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Semaforina-3A/genética , Versicanas/metabolismo
12.
Carcinogenesis ; 34(10): 2370-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828904

RESUMO

Lysyl oxidase-like 2 (LOXL2), a secreted enzyme that catalyzes the cross-linking of collagen, plays an essential role in developmental angiogenesis. We found that administration of the LOXL2-neutralizing antibody AB0023 inhibited bFGF-induced angiogenesis in Matrigel plug assays and suppressed recruitment of angiogenesis promoting bone marrow cells. Small hairpin RNA-mediated inhibition of LOXL2 expression or inhibition of LOXL2 using AB0023 reduced the migration and network-forming ability of endothelial cells, suggesting that the inhibition of angiogenesis results from a direct effect on endothelial cells. To examine the effects of AB0023 on tumour angiogenesis, AB0023 was administered to mice bearing tumours derived from SKOV-3 ovarian carcinoma or Lewis lung carcinoma (LLC) cells. AB0023 treatment significantly reduced the microvascular density in these tumours but did not inhibit tumour growth. However, treatment of mice bearing SKOV-3-derived tumours with AB0023 also promoted increased coverage of tumour vessels with pericytes and reduced tumour hypoxia, providing evidence that anti-LOXL2 therapy results in the normalization of tumour blood vessels. In agreement with these data, treatment of mice bearing LLC-derived tumours with AB0023 improved the perfusion of the tumour-associated vessels as determined by ultrasonography. Improved perfusion and normalization of tumour vessels after treatment with anti-angiogenic agents were previously found to improve the delivery of chemotherapeutic agents into tumours and to result in an enhancement of chemotherapeutic efficiency. Indeed, treatment with AB0023 significantly enhanced the anti-tumourigenic effects of taxol. Our results suggest that inhibition of LOXL2 may prove beneficial for the treatment of angiogenic tumours.


Assuntos
Aminoácido Oxirredutases/genética , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neovascularização Patológica/genética , Aminoácido Oxirredutases/antagonistas & inibidores , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico
13.
J Biol Chem ; 287(5): 3541-9, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22157764

RESUMO

Lysyl oxidase-like-2 (LOXL2) induces tumor progression and fibrosis. It also inhibits the differentiation of keratinocytes promoting development of squamous cell carcinomas. Stimulation of HaCaT skin keratinocytes with exogenous LOXL2 or overexpression of LOXL2 in these cells inhibits their differentiation as manifested by inhibition of calcium or vitamin D-induced involucrin expression. The inhibition was abrogated by the LOXL2 function-blocking monoclonal antibody AB0023 as well as by an anti-LOXL2 polyclonal antibody. Surprisingly, a point-mutated form of LOXL2 (LOXL2(Y689F)) lacking enzymatic activity, as well as a LOXL2 deletion mutant lacking the entire catalytic domain, also inhibited calcium or vitamin D-induced up-regulation of involucrin expression, suggesting that the enzymatic activity of LOXL2 is not required for this activity. This conclusion was supported by experiments that showed that ß-aminoproprionitrile, an irreversible competitive inhibitor of the enzymatic activity of all lysyl oxidases, is unable to abolish the LOXL2-induced inhibition of HaCaT cell differentiation. The activity of LOXL2(Y689F) required the presence of the fourth scavenger receptor-cysteine-rich (SRCR) domain of LOXL2, which is also the binding target of AB0023. Epitope-tagged LOXL2(Y689F) was internalized at 37 °C by HaCaT cells. The internalization was inhibited by AB0023 and by competition with unlabeled LOXL2, suggesting that these cells may express a LOXL2 receptor. Our results suggest that agents that inhibit the enzymatic activity of LOXL2 may not suffice to inhibit completely the effects of LOXL2 on complex processes that involve altered states of cellular differentiation.


Assuntos
Aminoácido Oxirredutases/metabolismo , Diferenciação Celular/fisiologia , Queratinócitos/enzimologia , Aminoácido Oxirredutases/antagonistas & inibidores , Aminoácido Oxirredutases/genética , Substituição de Aminoácidos , Aminopropionitrilo/farmacologia , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Cálcio/metabolismo , Células HEK293 , Humanos , Queratinócitos/citologia , Mutação Puntual , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , Estrutura Terciária de Proteína , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Vitamina D/farmacologia , Vitaminas/farmacologia
14.
Blood ; 118(15): 4285-96, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21832283

RESUMO

Plexin-A4 is a receptor for sema6A and sema6B and associates with neuropilins to transduce signals of class-3 semaphorins. We observed that plexin-A1 and plexin-A4 are required simultaneously for transduction of inhibitory sema3A signals and that they form complexes. Unexpectedly, inhibition of plexin-A1 or plexin-A4 expression in endothelial cells using specific shRNAs resulted in prominent plexin type specific rearrangements of the actin cytoskeleton that were accompanied by inhibition of bFGF and VEGF-induced cell proliferation. The two responses were not interdependent since silencing plexin-A4 in U87MG glioblastoma cells inhibited cell proliferation and strongly inhibited the formation of tumors from these cells without affecting cytoskeletal organization. Plexin-A4 formed stable complexes with the FGFR1 and VEGFR-2 tyrosine-kinase receptors and enhanced VEGF-induced VEGFR-2 phosphorylation in endothelial cells as well as bFGF-induced cell proliferation. We also obtained evidence suggesting that some of the pro-proliferative effects of plexin-A4 are due to transduction of autocrine sema6B-induced pro-proliferative signals, since silencing sema6B expression in endothelial cells and in U87MG cells mimicked the effects of plexin-A4 silencing and also inhibited tumor formation from the U87MG cells. Our results suggest that plexin-A4 may represent a target for the development of novel anti-angiogenic and anti-tumorigenic drugs.


Assuntos
Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Superfície Celular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Comunicação Autócrina/genética , Linhagem Celular Tumoral , Proliferação de Células , Descoberta de Drogas , Células Endoteliais/patologia , Fator 2 de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Glioblastoma/irrigação sanguínea , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas de Neoplasias/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Fosforilação/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Superfície Celular/genética , Semaforinas/genética , Semaforinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Cancers (Basel) ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627074

RESUMO

Plexins are a family of nine single-pass transmembrane receptors with a conserved GTPase activating protein (GAP) domain. The plexin family is divided into four subfamilies: Type-A, type-B, type-C, and type-D plexins. Plexins function as receptors for axon guidance factors of the semaphorin family. The semaphorin gene family contains 22 genes that are divided into eight subclasses of which subclasses three to seven represent vertebrate semaphorins. The plexins and their semaphorin ligands have important roles as regulators of angiogenesis, cancer proliferation, and metastasis. Class 3 semaphorins, with the exception of sema3E, are the only semaphorins that do not bind directly to plexins. In order to transduce their signals, they bind instead to complexes consisting of receptors of the neuropilin family and various plexins. Some plexins also form complexes with tyrosine-kinase receptors such as the epidermal growth factor receptor ErbB2, the mesenchymal epithelial transition factor receptor (MET), and the Vascular endothelial growth factor receptor 2 (VEGFR2) and, as a result, can modulate cell proliferation and tumor progression. This review focuses on the roles of the different plexins in the control of cancer cell proliferation and invasiveness. Plexins also affect tumor progression and tumor metastasis by indirect mechanisms, such as modulation of angiogenesis and immune responses. However, these topics are not covered in the present review.

16.
Cell Death Dis ; 14(1): 41, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658114

RESUMO

The semaphorin guidance factors receptor plexin-A2 transduces sema6A and sema6B signals and may mediate, along with plexin-A4, the anti-angiogenic effects of sema6A. When associated with neuropilins plexin-A2 also transduces the anti-angiogenic signals of sema3B. Here we show that inhibition of plexin-A2 expression in glioblastoma derived cells that express wild type p53 such as U87MG and A172 cells, or in primary human endothelial cells, strongly inhibits cell proliferation. Inhibition of plexin-A2 expression in U87MG cells also results in strong inhibition of their tumor forming ability. Knock-out of the plexin-A2 gene in U87MG cells using CRISPR/Cas9 inhibits cell proliferation which is rescued following plexin-A2 re-expression, or expression of a truncated plexin-A2 lacking its extracellular domain. Inhibition of plexin-A2 expression results in cell cycle arrest at the G2/M stage, and is accompanied by changes in cytoskeletal organization, cell flattening, and enhanced expression of senescence associated ß-galactosidase. It is also associated with reduced AKT phosphorylation and enhanced phosphorylation of p38MAPK. We find that the pro-proliferative effects of plexin-A2 are mediated by FARP2 and FYN and by the GTPase activating (GAP) domain located in the intracellular domain of plexin-A2. Point mutations in these locations inhibit the rescue of cell proliferation upon re-expression of the mutated intracellular domain in the knock-out cells. In contrast re-expression of a plexin-A2 cDNA containing a point mutation in the semaphorin binding domain failed to inhibit the rescue. Our results suggest that plexin-A2 may represent a novel target for the development of anti-tumorigenic therapeutics.


Assuntos
Glioblastoma , Proteínas do Tecido Nervoso , Receptores de Superfície Celular , Semaforinas , Humanos , Proliferação de Células/genética , Células Endoteliais/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
17.
FASEB J ; 25(1): 55-65, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20802105

RESUMO

Lysyl oxidase-like protein-2 (LOXL2) induces epithelial to mesenchymal transition and promotes invasiveness. To understand the mechanisms involved, we examined the effect of LOXL2 overexpression in MCF-7 cells on gene expression. We found that LOXL2 up-regulated the expression of receptor activity modifying protein-3 (RAMP3). Expression of RAMP3 in MDA-MB-231 cells in which LOXL2 expression was inhibited restored vimentin expression, invasiveness, and tumor development. Inhibition of RAMP3 expression in MDA-MB-231 cells mimicked the effects produced by inhibition of LOXL2 expression and was accompanied by inhibition of p38 phosphorylation. LOXL2 overexpression in these cells did not restore invasiveness, suggesting that RAMP3 functions downstream to LOXL2. LOXL2 and RAMP3 are strongly coexpressed in human colon, breast, and gastric carcinomas but not in normal colon or gastric epithelial cells. RAMP3 associates with several G-protein-coupled receptors forming receptors for peptides, such as adrenomedullin and amylin. We hypothesized that RAMP3 could function as a transducer of autocrine signals induced by such peptides. However, the proinvasive effects of RAMP3 could not be abrogated following inhibition of the expression or activity of these peptides. Our experiments suggest that the protumorigenic effects of LOXL2 are partially mediated by RAMP3 and that RAMP3 inhibitors may function as antitumorigenic agents. -


Assuntos
Aminoácido Oxirredutases/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteína 3 Modificadora da Atividade de Receptores/genética , Aminoácido Oxirredutases/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Células HCT116 , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Interferência de RNA , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/genética , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Pharmacol ; 13: 1085892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703747

RESUMO

Regulatory molecules have recently been recognized for their beneficial effects in the treatment of immune-mediated diseases, rather than using cytotoxic immune-suppressing drugs, which are associated with many unwanted side effects. Semaphorin3A (sema3A), a unique regulatory master of the immune system, was shown to be decreased in the serum of systemic lupus erythematosus (SLE) patients, in association with disease severity. Later, we were able to show its extremely beneficial effect in treating lupus nephritis in the NZB/W mice model. The mechanisms by which sema3A maintains its regulatory effect is by binding the regulatory receptor CD72 on B cells, thereby reducing the threshold of BCR signaling on B cells and reducing the production of pro-inflammatory cytokines. The aim of this study was to generate a stable sema3A molecule, easy to produce with a higher binding capacity to CD72 receptor rather than to Neuropilin-1 (NRP-1) receptor, which is expressed in many cell types. Using the crystallographic structure of parental sema3A, we synthesized a new secreted (shorter) sema3A derivative, which we called truncated sema3A (T-sema3A). The new molecule lacked the NRP-1 binding domain (the C-terminal site) and has an artificial dimerization site at position 257 (serine residue was exchanged with a cysteine residue). To facilitate the purification of this molecule we added Histidine epitope tag in frame upstream to a stop codon. This construct was transfected using a viral vector to 293HEK cells to generate cells stably expressing T-sema3A. T-sema3A is shown to be with a higher binding ability to CD72 than to NRP-1 as demonstrated by a homemade ELISA. In addition, T-sema3A was shown to be a regulatory agent which can induce the expression of IL-10 and TGF-ß and reduce the secretion of pro-inflammatory cytokines such as IL-6, IFN-γ, and IL-17A from human T and B-lymphocytes. Keeping this in mind, T-sema3A is highly effective in maintaining immune homeostasis, therefore, becoming a potential agent in restoring the regulatory status of the immune system in immune-mediated diseases.

19.
Redox Biol ; 57: 102496, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209516

RESUMO

Lysyl-oxidase like-2 (LOXL2) regulates extracellular matrix remodeling and promotes tumor invasion and metastasis. Altered metabolism is a core hallmark of cancer, however, it remains unclear whether and how LOXL2 contributes to tumor metabolism. Here, we found that LOXL2 and its catalytically inactive L2Δ13 splice variant boost glucose metabolism of esophageal tumor cells, facilitate tumor cell proliferation and promote tumor development in vivo. Consistently, integrated transcriptomic and metabolomic analysis of a knock-in mouse model expressing L2Δ13 gene revealed that LOXL2/L2Δ13 overexpression perturbs glucose and lipid metabolism. Mechanistically, we identified aldolase A, glyceraldehyde-3-phosphate dehydrogenase and enolase as glycolytic proteins that interact physically with LOXL2 and L2Δ13. In the case of aldolase A, LOXL2/L2Δ13 stimulated its mobilization from the actin cytoskeleton to enhance aldolase activity during malignant transformation. Using stable isotope labeling of amino acids in cell culture (SILAC) followed by proteomic analysis, we identified LOXL2 and L2Δ13 as novel deacetylases that trigger metabolic reprogramming. Both LOXL2 and L2Δ13 directly catalyzed the deacetylation of aldolase A at K13, resulting in enhanced glycolysis which subsequently reprogramed tumor metabolism and promoted tumor progression. High level expression of LOXL2/L2Δ13 combined with decreased acetylation of aldolase-K13 predicted poor clinical outcome in patients with esophageal cancer. In summary, we have characterized a novel molecular mechanism that mediates the pro-tumorigenic activity of LOXL2 independently of its classical amine oxidase activity. These findings may enable the future development of therapeutic agents targeting the metabolic machinery via LOXL2 or L2Δ13. HIGHLIGHT OF THE STUDY: LOXL2 and its catalytically inactive isoform L2Δ13 function as new deacetylases to promote metabolic reprogramming and tumor progression in esophageal cancer by directly activating glycolytic enzymes such as aldolase A.

20.
Matrix Biol ; 99: 58-71, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34004353

RESUMO

The pro-tumorigenic properties of heparanase are well documented, and heparanase inhibitors are being evaluated clinically as anti-cancer therapeutics. In contrast, the role of heparanase 2 (Hpa2), a close homolog of heparanase, in cancer is largely unknown. Previously, we have reported that in head and neck cancer, high levels of Hpa2 are associated with prolonged patient survival and decreased tumor cell dissemination to regional lymph nodes, suggesting that Hpa2 functions to restrain tumorigenesis. Also, patients with high levels of Hpa2 were diagnosed as low grade and exhibited increased expression of cytokeratins, an indication that Hpa2 promotes or maintains epithelial cell differentiation and identity. To reveal the molecular mechanism underlying the tumor suppressor properties of Hpa2, and its ability to induce the expression of cytokeratin, we employed overexpression as well as gene editing (Crispr) approaches, combined with gene array and RNAseq methodologies. At the top of the list of many genes found to be affected by Hpa2 was Sox2. Here we provide evidence that silencing of Sox2 resulted in bigger tumors endowed with reduced cytokeratin levels, whereas smaller tumors were developed by cells overexpressing Sox2, suggesting that in head and neck carcinoma, Sox2 functions to inhibit tumor growth. Notably, Hpa2-null cells engineered by Crispr/Cas 9, produced bigger tumors vs control cells, and rescue of Hpa2 attenuated tumor growth. These results strongly imply that Hpa2 functions as a tumor suppressor in head and neck cancer, involving Sox2 upregulation mediated, in part, by the high-affinity interaction of Hpa2 with heparan sulfate.


Assuntos
Glucuronidase , Neoplasias de Cabeça e Pescoço , Glucuronidase/genética , Neoplasias de Cabeça e Pescoço/genética , Heparitina Sulfato , Humanos , Fatores de Transcrição SOXB1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA