Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Biol ; 20(5): e3001643, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639676

RESUMO

Ensuring high vaccination and even booster vaccination coverage is critical in preventing severe Coronavirus Disease 2019 (COVID-19). Among the various COVID-19 vaccines currently in use, the mRNA vaccines have shown remarkable effectiveness. However, systemic adverse events (AEs), such as postvaccination fatigue, are prevalent following mRNA vaccination, and the underpinnings of which are not understood. Herein, we found that higher baseline expression of genes related to T and NK cell exhaustion and suppression were positively correlated with the development of moderately severe fatigue after Pfizer-BioNTech BNT162b2 vaccination; increased expression of genes associated with T and NK cell exhaustion and suppression reacted to vaccination were associated with greater levels of innate immune activation at 1 day postvaccination. We further found, in a mouse model, that altering the route of vaccination from intramuscular (i.m.) to subcutaneous (s.c.) could lessen the pro-inflammatory response and correspondingly the extent of systemic AEs; the humoral immune response to BNT162b2 vaccination was not compromised. Instead, it is possible that the s.c. route could improve cytotoxic CD8 T-cell responses to BNT162b2 vaccination. Our findings thus provide a glimpse of the molecular basis of postvaccination fatigue from mRNA vaccination and suggest a readily translatable solution to minimize systemic AEs.


Assuntos
COVID-19 , Animais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Fadiga/etiologia , Humanos , Células Matadoras Naturais , Camundongos , RNA Mensageiro/genética , Vacinação/efeitos adversos
2.
N Engl J Med ; 383(5): 452-459, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32726531

RESUMO

BACKGROUND: Insufficient vaccine doses and the lack of therapeutic agents for yellow fever put global health at risk, should this virus emerge from sub-Saharan Africa and South America. METHODS: In phase 1a of this clinical trial, we assessed the safety, side-effect profile, and pharmacokinetics of TY014, a fully human IgG1 anti-yellow fever virus monoclonal antibody. In a double-blind, phase 1b clinical trial, we assessed the efficacy of TY014, as compared with placebo, in abrogating viremia related to the administration of live yellow fever vaccine (YF17D-204; Stamaril). The primary safety outcomes were adverse events reported 1 hour after the infusion and throughout the trial. The primary efficacy outcome was the dose of TY014 at which 100% of the participants tested negative for viremia within 48 hours after infusion. RESULTS: A total of 27 healthy participants were enrolled in phase 1a, and 10 participants in phase 1b. During phase 1a, TY014 dose escalation to a maximum of 20 mg per kilogram of body weight occurred in 22 participants. During phases 1a and 1b, adverse events within 1 hour after infusion occurred in 1 of 27 participants who received TY014 and in none of the 10 participants who received placebo. At least one adverse event occurred during the trial in 22 participants who received TY014 and in 8 who received placebo. The mean half-life of TY014 was approximately 12.8 days. At 48 hours after the infusion, none of the 5 participants who received the starting dose of TY014 of 2 mg per kilogram had detectable YF17D-204 viremia; these participants remained aviremic throughout the trial. Viremia was observed at 48 hours after the infusion in 2 of 5 participants who received placebo and at 72 hours in 2 more placebo recipients. Symptoms associated with yellow fever vaccine were less frequent in the TY014 group than in the placebo group. CONCLUSIONS: This phase 1 trial of TY014 did not identify worrisome safety signals and suggested potential clinical benefit, which requires further assessment in a phase 2 trial. (Funded by Tysana; ClinicalTrials.gov number, NCT03776786.).


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Vacina contra Febre Amarela , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/imunologia , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , Relação Dose-Resposta a Droga , Método Duplo-Cego , Meia-Vida , Humanos , Estimativa de Kaplan-Meier , Viremia/tratamento farmacológico , Febre Amarela/virologia , Vírus da Febre Amarela/efeitos dos fármacos
3.
PLoS Pathog ; 10(1): e1003843, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391499

RESUMO

The homeostatic mechanisms that regulate the maintenance of immunological memory to the multiple pathogen encounters over time are unknown. We found that a single malaria episode caused significant dysregulation of pre-established Influenza A virus-specific long-lived plasma cells (LLPCs) resulting in the loss of Influenza A virus-specific Abs and increased susceptibility to Influenza A virus re-infection. This loss of LLPCs involved an FcγRIIB-dependent mechanism, leading to their apoptosis. However, given enough time following malaria, the LLPC pool and humoral immunity to Influenza A virus were eventually restored. Supporting a role for continuous conversion of Influenza A virus-specific B into LLPCs in the restoration of Influenza A virus immunity, B cell depletion experiments also demonstrated a similar requirement for the long-term maintenance of serum Influenza A virus-specific Abs in an intact LLPC compartment. These findings show that, in addition to their established role in the anamnestic response to reinfection, the B cell pool continues to be a major contributor to the maintenance of long-term humoral immunity following primary Influenza A virus infection, and to the recovery from attrition following heterologous infection. These data have implications for understanding the longevity of protective efficacy of vaccinations in countries where continuous infections are endemic.


Assuntos
Anticorpos Antivirais/imunologia , Imunidade Humoral , Vírus da Influenza A/imunologia , Malária/imunologia , Infecções por Orthomyxoviridae/imunologia , Plasmócitos/imunologia , Plasmodium chabaudi/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Plasmócitos/patologia , Receptores de IgG/imunologia , Fatores de Tempo
4.
EBioMedicine ; 89: 104472, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36801619

RESUMO

BACKGROUND: Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS: We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS: The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION: Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING: K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.


Assuntos
COVID-19 , Humanos , Idoso , Cadeias alfa de HLA-DR/genética , SARS-CoV-2 , Leucócitos Mononucleares , Prognóstico
5.
Open Forum Infect Dis ; 7(7): ofaa256, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32704516

RESUMO

The COVID-19 pandemic has taken over the world at an unprecedented scale. As Infectious Diseases fellows, this has come straight into the heart of our specialty and created a unique impact on our training progress and perspective. Here, we reflect on our early experiences during the first three months of battling COVID-19 in Singapore and glean some lessons for this pandemic and beyond.

6.
Cell Rep ; 31(6): 107617, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402284

RESUMO

The molecular basis of dengue virus (DENV) attenuation remains ambiguous and hampers a targeted approach to derive safe but nonetheless immunogenic live vaccine candidates. Here, we take advantage of DENV serotype 2 PDK53 vaccine strain, which recently and successfully completed a phase-3 clinical trial, to identify how this virus is attenuated compared to its wild-type parent, DENV2 16681. Site-directed mutagenesis on a 16681 infectious clone identifies a single G53D substitution in the non-structural 1 (NS1) protein that reduces 16681 infection and dissemination in both Aedes aegypti, as well as in mammalian cells to produce the characteristic phenotypes of PDK53. Mechanistically, NS1 G53D impairs the function of a known host factor, the endoplasmic reticulum (ER)-resident ribophorin 1 protein, to properly glycosylate NS1 and thus induce a host antiviral gene through ER stress responses. Our findings provide molecular insights on DENV attenuation on a clinically tested strain.


Assuntos
Vacinas contra Dengue/farmacologia , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Aedes/virologia , Animais , Chlorocebus aethiops , Dengue/virologia , Vacinas contra Dengue/imunologia , Estresse do Retículo Endoplasmático , Feminino , Glicosilação , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Células Vero , Proteínas não Estruturais Virais/metabolismo
7.
PLoS One ; 5(11): e15007, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21124900

RESUMO

B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD(-) IgM(-) CD19(+) B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138(+) plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138(+) plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood.


Assuntos
Linfócitos B/imunologia , Leucócitos Mononucleares/imunologia , Malária/imunologia , Plasmócitos/imunologia , Plasmodium chabaudi/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Linfócitos B/metabolismo , Células da Medula Óssea/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Memória Imunológica/imunologia , Cinética , Leucócitos Mononucleares/metabolismo , Malária/sangue , Malária/parasitologia , Proteína 1 de Superfície de Merozoito/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/metabolismo , Baço/citologia , Baço/imunologia , Sindecana-1/imunologia , Sindecana-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA