Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(33): e2203287119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939711

RESUMO

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.


Assuntos
Terapia por Estimulação Elétrica , Neuroestimuladores Implantáveis , Nanoestruturas , Semicondutores , Compostos Inorgânicos de Carbono/química , Terapia por Estimulação Elétrica/instrumentação , Membranas Artificiais , Compostos de Silício/química , Dióxido de Silício/química
2.
Chemistry ; : e202402339, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196604

RESUMO

N-Heterocyclic carbenes (NHCs) have become important tools in modern synthetic chemistry due to their versatility as organocatalysts and ligands in organometallic complexes. Since their first isolation and characterization, NHCs have demonstrated significant utility in various catalytic processes, offering advantages such as strong σ-electron donation and the ability to stabilize reactive intermediates. However, beyond their well-documented roles in catalysis, the potential of NHCs as stoichiometric reagents and synthetic building blocks remains an underexplored yet promising area. This Mini-review aims to shed light on these lesser-known applications of NHCs and their N-heterocyclic precursors or derivatives in organic synthesis. Furthermore, we discuss how the unique electronic and steric properties of NHCs can be harnessed to develop new synthetic methodologies or construct interesting organic frameworks. By highlighting these emerging uses, we hope to encourage further research into the non-catalytic applications of NHCs, broadening their scope and impact in synthetic chemistry.

3.
Angew Chem Int Ed Engl ; 63(1): e202317003, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37997004

RESUMO

Skeletal editing is an important strategy in organic synthesis as it modifies the carbon backbone to tailor molecular structures with precision, enabling access to compounds with specific desired properties. Skeletal editing empowers chemists to transform synthetic approaches of target compounds across diverse applications from drug discovery to materials science. Herein, we introduce a new skeletal editing method to convert readily available aromatic carbonyl compounds into valuable unsaturated carboxylic acids with extended carbon chains. Our reaction setup enables a cascade reaction of enolization-[2+2]cycloaddition-[2+2]cycloreversion between aromatic carbonyl compounds and ketals of cyclic ketones to generate unsaturated carboxylic acids as ring-opening products. Through a simple design, our substrates are specifically activated to react at predetermined positions to enhance selectivity and efficiency. This practical method offers convenient access to versatile organic building blocks as well as provides fresh insights into manipulating traditional reaction pathways for new synthetic applications.

4.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050430

RESUMO

It is expected that human iPS cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat serious heart diseases. However, the properties and functions of human adult cardiomyocytes and hiPSC-CMs, including cell maturation, differ. In this study, we focused on the temperature dependence of hiPSC-CMs by integrating the temperature regulation system into our sensor platform, which can directly and quantitatively measure their mechanical motion. We measured the beating frequency of hiPSC-CMs at different environmental temperatures and found that the beating frequency increased as the temperature increased. Although the rate at which the beating frequency increased with temperature varied, the temperature at which the beating stopped was relatively stable at approximately 20 °C. The stopping of beating at this temperature was stable, even in immature hiPSC-CMs, and was considered to be a primitive property of cardiomyocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas Microeletromecânicos , Adulto , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Temperatura , Diferenciação Celular , Miócitos Cardíacos/fisiologia , Células Cultivadas
5.
J Am Chem Soc ; 143(48): 20384-20394, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807589

RESUMO

The alternating physical properties, especially melting points, of α,ω-disubstituted n-alkanes and their parent n-alkanes had been known since Baeyer's report in 1877. There is, however, no general and comprehensive explanation for such a phenomenon. Herein, we report the synthesis and examination of a series of novel ω-phenyl n-alkyl tropylium tetrafluoroborates, which also display alternation in their physicochemical characters. Despite being organic salts, the compounds with odd numbers of carbons in the alkyl bridge exist as room temperature ionic liquids. In stark contrast to this, the analogues with even numbers of carbons in the linker are crystalline solids. These solid nonconjugated molecules exhibit curious photoluminescent properties, which can be attributed to their ability to form through-space charge-transfer complexes to cause crystallization-induced emission enhancement. Most notably, the compound with the highest photoluminescent quantum yield in this series showed an unusual arrangement of carbocationic dimer in the solid state. A combination of XRD analysis and ab initio calculations revealed interesting insights into these systems.

6.
Chemistry ; 27(8): 2628-2632, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278310

RESUMO

Herein we describe a multiple C-H functionalization reaction of carbazole heterocycles with diazoalkanes. We show that gold catalysts play a distinct role in enabling a multiple C-H functionalization reaction to introduce up to six carbene fragments onto molecules containing multiple carbazole units or to link multiple carbazole units into a single molecule. A one-pot stepwise approach enables the introduction of two different carbene fragments to allow orthogonal deprotection and straightforward derivatization.

7.
J Org Chem ; 86(13): 9117-9133, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34134487

RESUMO

Hydroboration reaction of alkynes is one of the most synthetically powerful tools to access organoboron compounds, versatile precursors for cross-coupling chemistry. This type of reaction has traditionally been mediated by transition-metal or main group catalysts. Herein, we report a novel method using tropylium salts, typically known as organic oxidants and Lewis acids, to promote the hydroboration reaction of alkynes. A broad range of vinylboranes can be easily accessed via this metal-free protocol. Similar hydroboration reactions of alkenes and epoxides can also be efficiently catalyzed by the same tropylium catalysts. Experimental studies and DFT calculations suggested that the reaction follows an uncommon mechanistic pathway, which is triggered by the hydride abstraction of pinacolborane with tropylium ion. This is followed by a series of in situ counterion-activated substituent exchanges to generate boron intermediates that promote the hydroboration reaction.

8.
J Org Chem ; 86(12): 8154-8171, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34048250

RESUMO

Substituted pyrans and furans are core structures found in a wide variety of natural products and biologically active compounds. Herein, we report a practical and mild catalytic method for the synthesis of substituted pyrans and furans using molecular iodine, a simple and inexpensive catalyst. The method described is performed under solvent-free conditions at an ambient temperature and atmosphere, thus offering a facile and practical alternative to currently available reaction protocols. A combination of experimental studies and density functional theory calculations revealed interesting mechanistic insights into this seemingly simple reaction.


Assuntos
Iodo , Piranos , Catálise , Furanos , Iodetos
9.
Sensors (Basel) ; 21(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34300635

RESUMO

This paper reports on a mask-type sensor for simultaneous pulse wave and respiration measurements and eye blink detection that uses only one sensing element. In the proposed sensor, a flexible air bag-shaped chamber whose inner pressure change can be measured by a microelectromechanical system-based piezoresistive cantilever was used as the sensing element. The air bag-shaped chamber is fabricated by wrapping a sponge pad with plastic film and polyimide tape. The polyimide tape has a hole to which the substrate with the piezoresistive cantilever adheres. By attaching the sensor device to a mask where it contacts the nose of the subject, the sensor can detect the pulses and eye blinks of the subject by detecting the vibration and displacement of the nose skin caused by these physiological parameters. Moreover, the respiration of the subject causes pressure changes in the space between the mask and the face of the subject as well as slight vibrations of the mask. Therefore, information about the respiration of the subject can be extracted from the sensor signal using either the low-frequency component (<1 Hz) or the high-frequency component (>100 Hz). This paper describes the sensor fabrication and provides demonstrations of the pulse wave and respiration measurements as well as eye blink detection using the fabricated sensor.


Assuntos
Sistemas Microeletromecânicos , Piscadela , Frequência Cardíaca , Pressão , Respiração
10.
Sensors (Basel) ; 20(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075243

RESUMO

This paper reports on a microelectromechanical systems (MEMS)-based sensor for pulse wave measurement. The sensor consists of an air chamber with a thin membrane and a 300-nm thick piezoresistive cantilever placed inside the chamber. When the membrane of the chamber is in contact with the skin above a vessel of a subject, the pulse wave of the subject causes the membrane to deform, leading to a change in the chamber pressure. This pressure change results in bending of the cantilever and change in the resistance of the cantilever, hence the pulse wave of the subject can be measured by monitoring the resistance of the cantilever. In this paper, we report the sensor design and fabrication, and demonstrate the measurement of the pulse wave using the fabricated sensor. Finally, measurement of the pulse wave velocity (PWV) is demonstrated by simultaneously measuring pulse waves at two points using the two fabricated sensor devices. Furthermore, the effect of breath holding on PWV is investigated. We showed that the proposed sensor can be used to continuously measure the PWV for each pulse, which indicates the possibility of using the sensor for continuous blood pressure measurement.

11.
Sensors (Basel) ; 19(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766200

RESUMO

The continuous measurements of vital signs (body temperature, blood pressure, pulse wave, and respiration rate) are important in many applications across various fields, including healthcare and sports. To realize such measurements, wearable devices that cause minimal discomfort to the wearers are highly desired. Accordingly, a device that can measure multiple vital signs simultaneously using a single sensing element is important in order to reduce the number of devices attached to the wearer's body, thereby reducing user discomfort. Thus, in this study, we propose a device with a microelectromechanical systems (MEMS)-based pressure sensor that can simultaneously measure the blood pulse wave and respiration rate using only one sensing element. In particular, in the proposed device, a thin silicone tube, whose inner pressure can be measured via a piezoresistive cantilever, is attached to the nose pad of a pair of eyeglasses. On wearing the eyeglasses, the tube of sensor device is in contact with the area above the angular artery and nasal cavity of the subject, and thus, both pulse wave and breath of the subject cause the tube's inner pressure to change. We experimentally show that it is possible to extract information related to pulse wave and respiration as the low-frequency and high-frequency components of the sensor signal, respectively.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Análise de Onda de Pulso/instrumentação , Taxa Respiratória/fisiologia , Adulto , Calibragem , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade
12.
Chemistry ; 24(43): 10959-10965, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29774976

RESUMO

Tropylium ions possess an interesting combination of structural stability and chemical reactivity due to its Hückel aromaticity and its positively charged polyene nature, respectively. Herein we exploit the chemical versatility and unique structural properties of the tropylium ion to derive a family of novel push-pull organic dyes with strong absorption in the visible range via simple and practical synthetic protocols. These stable organic dyes are highly stimuli-responsive, as demonstrated by their sensitivity towards solvent, pH change, redox reaction, Lewis base and counterion, which marks them as potentially useful compounds for opto-electronic applications.

13.
Langmuir ; 32(37): 9523-9, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27603591

RESUMO

Surfaces covered with hydrophobic micro-/nanoscale textures can allow water droplets to slide easily because of low contact angle hysteresis. In contrast to the case of a droplet sliding on a smooth surface, when a droplet slides on a textured surface, it must recede from the textures at its rear edge and the resultant depinning events induce a capillary wave on the surface of the droplet. Although this depinning-induced capillary wave can be observed to some extent through high-speed imaging, important parameters of the wave, such as the wavelength and frequency, and the factors that determine these parameters are not fully understood. We report direct measurements of this depinning-induced capillary wave using microelectromechanical systems (MEMS)-based force sensors fabricated on a textured surface. Such sensor measurements reveal the frequency of the vibration occurring on the surface of the droplet, from which it is possible to calculate the wavelength of the capillary wave. We show that the frequency and wavelength of the depinning-induced capillary wave during the sliding of a water droplet on a micropillar array depend upon neither the size of the droplet nor its sliding velocity. However, the frequency (wavelength) decreases (increases) as the pitch of the micropillar array increases. We argue that the wavelength of the depinning-induced capillary wave is equal to the maximum length of the liquid bridges that develop at the micropillars before depinning. This hypothesis is confirmed by comparing the wavelengths obtained from the sensor measurements to the maximum liquid-bridge lengths calculated from observations using a high-speed camera.

14.
Org Lett ; 26(41): 8842-8847, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39365979

RESUMO

The synthesis of quinoxaline derivatives holds critical importance in various fields ranging from pharmaceuticals to material science. In this study, we introduce a practical light-mediated method for the efficient synthesis of quinoxaline derivatives. This approach enabled the sequential two-step, one-pot synthesis of 1,2-dihydro-2,2-diaryl-substituted quinoxalines from quinones, alkynes, and diamines. By adjusting the stoichiometric ratios and reaction conditions, the method was shifted to yield 2,3-diaryl-substituted quinoxalines exclusively, demonstrating remarkable versatility and efficiency. This switch in reaction outcomes was revealed to involve an oxidative 1,2-aryl migration through a combination of thorough experimental and computational mechanistic studies.

15.
Chem Sci ; 15(19): 7187-7197, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756818

RESUMO

The halolactonization reaction provides rapid access to densely functionalized lactones from unsaturated carboxylic acids. The endo/exo regioselectivity of this cyclization reaction is primarily determined by the electronic stabilization of alkene substituents, thus making it inherently dependent on substrate structures. Therefore this method often affords one type of halolactone regioisomer only. Herein, we introduce a simple and efficient method for regioselectivity-switchable bromolactonization reactions mediated by HFIP solvent. Two sets of reaction conditions were developed, each forming endo-products or exo-products in excellent regioselectivity. A combination of computational and experimental mechanistic studies not only confirmed the crucial role of HFIP, but also revealed the formation of endo-products under kinetic control and exo-products under thermodynamic control. This study paves the way for future work on the use of perfluorinated solvents to dictate reaction outcomes in organic synthesis.

16.
J Neurol Sci ; 459: 122958, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522243

RESUMO

INTRODUCTION: The Vietnamese Smell Identification Test (VSIT) has been validated in determining olfactory dysfunction in the Vietnamese population; however, its value in diagnosing Parkinson's disease (PD) has not been established. METHODS: This case-control study was conducted at University Medical Center HCMC, Ho Chi Minh City, Vietnam. The study sample included non-demented PD patients and healthy controls (HC) who were gender- and age-matched. All participants were evaluated for odor identification ability using the VSIT and the Brief Smell Identification Test (BSIT). RESULTS: A total of 218 HCs and 218 PD patients participated in the study. The median VSIT and BSIT scores were significantly different between PD and HC groups (VSIT, 5 (3) vs. 9 (2), P < 0.0001; BSIT, 6 (3) vs 8 (2), P < 0.0001). Using the cut-off of <8 for correct answers out of 12 odorants, the VSIT had higher sensitivity (84.4%) and specificity (86.2%) than those of the BSIT (sensitivity of 81.7% and specificity of 69.3%) for the diagnosis of PD. The area under the curve (AUC) value was greater for the VSIT than for the BSIT (0.909 vs 0.818). The smell identification scores were not significantly correlated with disease duration, disease severity, or LEDD (all p > 0.05). CONCLUSION: The VSIT can be a valuable ancillary tool for supporting the diagnosis of PD in Vietnam. Olfactory dysfunction in PD was unrelated to the disease duration and severity. The VSIT can be applied to improve the accuracy of clinical PD diagnosis.


Assuntos
Transtornos do Olfato , Doença de Parkinson , Humanos , Olfato , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Vietnã , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/etiologia , Estudos de Casos e Controles , Odorantes
17.
Org Lett ; 25(50): 8981-8986, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38081763

RESUMO

The recent revelation of hidden-borane catalysis has revolutionized the field of catalytic hydroboration in organic synthesis. Many nucleophilic reaction promoters, previously believed to be the catalysts, in fact primarily facilitated the formation of borane (BH3), which subsequently acted as the true catalyst. This revelation prompted us to explore the untapped potential of these unexpected transformations, with a view to simplify hydroboration using more cost-effective and environmentally friendly nucleophilic precatalysts. Via computational studies, we were able to identify that water can actually undertake that role. Herein, we report a study on the simple hydroboration of nitriles, a notoriously challenging yet synthetically valuable class of substrates, using nothing more than moisture as an activating agent. This moisture-assisted nitrile hydroboration process can seamlessly integrate with a range of downstream transformations in a one-pot fashion to produce valuable N-containing products such as symmetrical imines, thioureas, and bis(alcohol)amines as well as N-heterocycles such as pyrroles, pyridines, pyridinium salts, 2-iminothiazolines, and carbazoles.

18.
Clin Toxicol (Phila) ; 61(6): 476-478, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37358038

RESUMO

INTRODUCTION: Organotin compounds are widely used in the plastic industry. We demonstrate the role of brain magnetic resonance imaging in a patient with leukoencephalopathy. CLINICAL COURSE: A 38-year-old man who worked with trimethyltin and dimethyltin in a polyvinyl chloride factory reported a two-week progression of impaired memory, loss of balance, apathy, tinnitus, scaly darkened skin, and psychomotor slowing that rendered him unable to continue his daily activities. Magnetic resonance imaging revealed diffuse bilateral white matter lesions. Tin concentrations in both blood (344 µ/L) and urine (3,050 µg/L) were elevated. Removal from exposure and treatment with succimer were associated with clinical, laboratory, and imaging improvements. DISCUSSION: The high lipid content of myelin is a likely target for lipid-soluble alkyl tin compounds. CONCLUSIONS: This patient demonstrates the clinical and magnetic resonance imaging findings of organotin toxicity. The contribution of chelation to the patient's recovery is uncertain and warrants further study.


Assuntos
Leucoencefalopatias , Compostos Orgânicos de Estanho , Humanos , Masculino , Adulto , Compostos Orgânicos de Estanho/toxicidade , Leucoencefalopatias/induzido quimicamente , Leucoencefalopatias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Lipídeos
19.
Sci Rep ; 13(1): 6503, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081122

RESUMO

This study investigates a cantilever-based pressure sensor that can achieve a resolution of approximately 0.2 mPa, over the frequency range of 0.1-250 Hz. A piezoresistive cantilever with ultra-high acoustic compliance is used as the sensing element in the proposed pressure sensor. We achieved a cantilever with a sensitivity of approximately 40 times higher than that of the previous cantilever device by realizing an ultrathin (340 nm thick) structure with large pads and narrow hinges. Based on the measurement results, the proposed pressure sensor can measure acoustic signals with frequencies as low as 0.1 Hz. The proposed pressure sensor can be used to measure low-frequency pressure and sound, which is crucial for various applications, including photoacoustic-based gas/chemical sensing and monitoring of physiological parameters and natural disasters. We demonstrate the measurement of heart sounds with a high SNR of 58 dB. We believe the proposed microphone will be used in various applications, such as wearable health monitoring, monitoring of natural disasters, and realization of high-resolution photoacoustic-based gas sensors. We successfully measured the first (S1) and second (S2) cardiac sounds with frequencies of 7-100 Hz and 20-45 Hz, respectively.


Assuntos
Ruídos Cardíacos , Desastres Naturais , Acústica , Som
20.
PNAS Nexus ; 2(7): pgad207, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404834

RESUMO

Applications in chemistry, biology, medicine, and engineering require the large-scale manipulation of a wide range of chemicals, samples, and specimens. To achieve maximum efficiency, parallel control of microlitre droplets using automated techniques is essential. Electrowetting-on-dielectric (EWOD), which manipulates droplets using the imbalance of wetting on a substrate, is the most widely employed method. However, EWOD is limited in its capability to make droplets detach from the substrate (jumping), which hinders throughput and device integration. Here, we propose a novel microfluidic system based on focused ultrasound passing through a hydrophobic mesh with droplets resting on top. A phased array dynamically creates foci to manipulate droplets of up to 300 µL. This platform offers a jump height of up to 10 cm, a 27-fold improvement over conventional EWOD systems. In addition, droplets can be merged or split by pushing them against a hydrophobic knife. We demonstrate Suzuki-Miyaura cross-coupling using our platform, showing its potential for a wide range of chemical experiments. Biofouling in our system was lower than in conventional EWOD, demonstrating its high suitability for biological experiments. Focused ultrasound allows the manipulation of both solid and liquid targets. Our platform provides a foundation for the advancement of micro-robotics, additive manufacturing, and laboratory automation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA