Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(6): 150, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184603

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Filamentos Intermediários , Superóxido Dismutase-1/genética , Proteína C9orf72/genética , Neurônios Motores/patologia
2.
Ultrastruct Pathol ; 47(5): 398-423, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37477534

RESUMO

BACKGROUND AND AIM: A murine model mimicking osmotic demyelination syndrome (ODS) revealed with histology in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei adjoined nerve cell bodies in chronic hyponatremia, amongst the damaged 12 h and 48 h after reinstatement of osmolality. This report aims to verify and complement with ultrastructure other neurophysiology, immunohistochemistry, and molecular biochemistry data to assess the connexin-36 protein, as part of those hinted close contacts.This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6) and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of these, thalamic zones samples included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3). RESULTS: Ultrastructure illustrated junctions between nerve cell bodies that were immunolabeled with connexin36 (Cx36) with light microscopy and Western blots. These cell's junctions were reminiscent of low resistance junctions characterized in other regions of the CNS with electrophysiology. Contiguous neurons showed neurolemma contacts in intact and damaged tissues according to their location in the ODS zones, at 12 h and 48 h post correction along with other demyelinating alterations. Neurons and ephaptic contact measurements indicated the highest alterations, including nerve cell necrosis in the ODS epicenter and damages decreased toward the outskirts of the demyelinated zone. CONCLUSION: Ephapses contained C × 36between intact or ODS injured neurons in the thalamus appeared to be resilient beyond the core degraded tissue injuries. These could maintain intercellular ionic and metabolite exchanges between these lesser injured regions and, thus, would partake to some brain plasticity repairs.


Assuntos
Doenças Desmielinizantes , Neurilema , Tálamo , Tálamo/ultraestrutura , Animais , Camundongos , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Neurônios/química , Neurônios/ultraestrutura , Neurilema/química , Neurilema/ultraestrutura , Conexinas/análise , Masculino , Camundongos Endogâmicos C57BL , Western Blotting , Proteína delta-2 de Junções Comunicantes
3.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003639

RESUMO

A murine osmotic demyelinating syndrome (ODS) model was developed through chronic hyponatremia, induced by desmopressin subcutaneous implants, followed by precipitous sodium restoration. The thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) relay nuclei were the most demyelinated regions where neuroglial damage could be evidenced without immune response. This report showed that following chronic hyponatremia, 12 h and 48 h time lapses after rebalancing osmolarity, amid the ODS-degraded outskirts, some resilient neuronal cell bodies built up primary cilium and axon hillock regions that extended into axon initial segments (AIS) where ADP-ribosylation factor-like protein 13B (ARL13B)-immunolabeled rod-like shape content was revealed. These AIS-labeled shaft lengths appeared proportional with the distance of neuronal cell bodies away from the ODS damaged epicenter and time lapses after correction of hyponatremia. Fine structure examination verified these neuron abundant transcriptions and translation regions marked by the ARL13B labeling associated with cell neurotubules and their complex cytoskeletal macromolecular architecture. This necessitated energetic transport to organize and restore those AIS away from the damaged ODS core demyelinated zone in the murine model. These labeled structures could substantiate how thalamic neuron resilience occurred as possible steps of a healing course out of ODS.


Assuntos
Segmento Inicial do Axônio , Doenças Desmielinizantes , Hiponatremia , Animais , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , Neurônios/metabolismo , Doenças Desmielinizantes/metabolismo
4.
Clin Exp Rheumatol ; 40(5): 897-903, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34128798

RESUMO

OBJECTIVES: To investigate the role of the interleukin IL-33/ST2 axis in systemic lupus erythematosus (SLE). METHODS: Serum concentrations of IL-33 and sST2 were measured by sandwich ELISA in SLE patients (n=111) compared to sex- and age-matched healthy controls (n=36). The serum concentrations of IL-33 and sST2 were correlated with various clinical and biological parameters. The expressions of IL-33 and ST2L were investigated in kidney sections by immunohistochemistry in lupus nephritis patients (n=23) and controls (n=10). RESULTS: Serum levels of IL-33 were significantly higher in SLE patients (11.64±3.141 pg/mL) than in controls (1.043±0.8526 pg/mL) (p<0.0001). Similarly, the serum concentrations of sST2 were significantly higher in SLE patients (34.013±2.043 pg/mL) than in controls (25.278±2.258 pg/mL) (p=0.046). sST2, but not IL-33, correlated significantly with disease activity index (SLEDAI). In addition, serum levels of sST2 were significantly higher in patients with lupus nephritis (45.438±5.661 pg/mL) that in SLE patients without renal involvement (30.691±1.941 pg/mL) (p=0.016). The immunoreactivity of IL-33 in renal biopsies of patients with lupus nephritis was not increased compared to controls, while the glomerular expression of ST2L was significantly higher in nephritis patients compared to controls. CONCLUSIONS: Although IL-33 and sST2 levels are both increased in SLE, sST2 represents a surrogate marker of disease activity and complications of nephritis.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Biomarcadores/sangue , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Interleucina-33/sangue , Lúpus Eritematoso Sistêmico/complicações , Nefrite Lúpica/diagnóstico
5.
Ultrastruct Pathol ; 45(2): 128-157, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34154511

RESUMO

A murine osmotic demyelination syndrome (ODS) model of the central nervous system included the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei. Morphologic comparisons between treatments have revealed oligodendrocyte changes and, already 12 hours following the osmolality restoration, some heavily contrasted oligodendrocytes formed a unique intracellular primary cilium. This unique structure, found in vivo, in mature CNS oligodendrocytes, could account for a local awakening of some of the developmental proteome as it can be expressed in oligodendrocyte precursor cells. This resilience accompanied the emergence of arl13b protein expression along with restoration of nerve cell body axon hillocks shown in a previous issue of this journal. Additionally, the return of several thalamic oligodendrocyte fine features (nucleus, organelles) was shown 36 h later, including some mitosis. Those cell restorations and recognized translational activities comforted that local repairs could again take place, due to oligodendrocyte resilience after ODS instead or added to a postulated immigration of oligodendrocyte precursor cells distant from the sites of myelinolysis.


Assuntos
Doenças Desmielinizantes , Animais , Cílios , Camundongos , Neurônios , Oligodendroglia
6.
Ultrastruct Pathol ; 45(6): 346-375, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743665

RESUMO

Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section's measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber's outskirts resembled 'ragged' fibers and, in these zones, ultrastructure revealed small clusters of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by circular patterns resembling those found of ceramides. The same fibers contained scattered degraded mitochondria that tethered electron contrasted droplets favoring larger depots while mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative energetic demands and muscle functions.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores para Leptina , Animais , Atrofia , Diabetes Mellitus Tipo 2/complicações , Feminino , Músculo Esquelético , Obesidade/complicações , Ratos , Ratos Zucker
7.
Ultrastruct Pathol ; 44(4-6): 450-480, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33393428

RESUMO

The development of a murine model of osmotic demyelinating syndrome (ODS) allowed to study changes incurred in extrapontine zones of the CNS and featured neuron and glial cell changes in the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei before, during and after ODS induction, and characterized without immune response. There, the neuron Wallerian-type deteriorations were verified with fine structure modifications of the neuron cell body, including some nucleus topology and its nucleolus changes. Morphologic analyses showed a transient stoppage of transcriptional activities while myelinated axons in the surrounding neuropil incurred diverse damages, previously reported. Even though the regional thalamus myelin deterioration was clearly recognized with light microscopy 248 h after osmotic recovery of ODS, ultrastructure analyses demonstrated that, at that time, the same damaged parenchyma regions contained nerve cell bodies that have already reactivated nucleus transcriptions and neuroplasm translations because peculiar accumulations of fibro-granular materials, similar to those detected in restored ODS astrocytes, were revealed in these restructuring nerve cell bodies. Their aspects suggested to be accumulations of ribonucleoproteins. The findings suggested that progressive neural function's recovery in the murine model could imitate some aspects of human ODS recovery cases.


Assuntos
Doenças Desmielinizantes/patologia , Hiponatremia/complicações , Neurônios/ultraestrutura , Tálamo/ultraestrutura , Animais , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Neurônios/patologia , Síndrome , Tálamo/patologia
8.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841618

RESUMO

Osmotic demyelination syndrome (ODS) is a disorder of the central myelin that is often associated with a precipitous rise of serum sodium. Remarkably, while the myelin and oligodendrocytes of specific brain areas degenerate during the disease, neighboring neurons and axons appear unspoiled, and neuroinflammation appears only once demyelination is well established. In addition to blood‒brain barrier breakdown and microglia activation, astrocyte death is among one of the earliest events during ODS pathology. This review will focus on various aspects of biochemical, molecular and cellular aspects of oligodendrocyte and astrocyte changes in ODS-susceptible brain regions, with an emphasis on the crosstalk between those two glial cells. Emerging evidence pointing to the initiating role of astrocytes in region-specific degeneration are discussed.


Assuntos
Astrócitos/metabolismo , Doenças Desmielinizantes/etiologia , Oligodendroglia/metabolismo , Concentração Osmolar , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Pressão Osmótica
9.
Glia ; 66(3): 606-622, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29168586

RESUMO

The osmotic demyelination syndrome (ODS) is a non-primary inflammatory disorder of the central nervous system myelin that is often associated with a precipitous rise of serum sodium concentration. To investigate the physiopathology of ODS in vivo, we generated a novel murine model based on the abrupt correction of chronic hyponatremia. Accordingly, ODS mice developed impairments in brainstem auditory evoked potentials and in grip strength. At 24 hr post-correction, oligodendrocyte markers (APC and Cx47) were downregulated, prior to any detectable demyelination. Oligodendrocytopathy was temporally and spatially correlated with the loss of astrocyte markers (ALDH1L1 and Cx43), and both with the brain areas that will develop demyelination. Oligodendrocytopathy and astrocytopathy were confirmed at the ultrastructural level and culminated with necroptotic cell death, as demonstrated by pMLKL immunoreactivity. At 48 hr post-correction, ODS brains contained pathognomonic demyelinating lesions in the pons, mesencephalon, thalamus and cortical regions. These damages were accompanied by blood-brain barrier (BBB) leakages. Expression levels of IL-1ß, FasL, TNFRSF6 and LIF factors were significantly upregulated in the ODS lesions. Quiescent microglial cells type A acquired an activated type B morphology within 24 hr post-correction, and reached type D at 48 hr. In conclusion, this murine model of ODS reproduces the CNS demyelination observed in human pathology and indicates ambiguous causes that is regional vulnerability of oligodendrocytes and astrocytes, while it discards BBB disruption as a primary cause of demyelination. This study also raises new queries about the glial heterogeneity in susceptible brain regions as well as about the early microglial activation associated with ODS.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiopatologia , Doenças Desmielinizantes/fisiopatologia , Necrose/fisiopatologia , Oligodendroglia/fisiologia , Animais , Astrócitos/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Permeabilidade Capilar/fisiologia , Conexina 43/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Progressão da Doença , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Membro Anterior/fisiopatologia , Junções Comunicantes/patologia , Junções Comunicantes/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/fisiologia , Força Muscular/fisiologia , Necrose/patologia , Oligodendroglia/patologia
10.
Ultrastruct Pathol ; 42(5): 377-408, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30339059

RESUMO

Young male Zucker rats with a leptin receptor mutation are obese, have a non-insulin-dependent diabetes mellitus (NIDDM), and other endocrinopathies. Tibial branches of the sciatic nerve reveal a progressive demyelination that progresses out of the Schwann cells (SCs) where electron-contrast deposits are accumulated while the minor lines or intermembranous SC contacts display exaggerated spacings. Cajal bands contain diversely contrasted vesicles adjacent to the abaxonal myelin layer with blemishes; they appear dispatched centripetally out of many narrow electron densities, regularly spaced around the myelin annulus. These anomalies widen and yield into sectors across the stacked myelin layers. Throughout the worse degradations, the adaxonal membrane remains along the axonal neuroplasm. This peripheral neuropathy with irresponsive leptin cannot modulate hypothalamic-pituitary-adrenal axis and SC neurosteroids, thus exacerbates NIDDM condition. Additionally, the ultrastructure of the progressive myelin alterations may have unraveled a peculiar, centripetal mode of trafficking maintenance of the peripheral nervous system myelin, while some adhesive glycoproteins remain between myelin layers, somewhat hindering the axon mutilation. Heading title: Peripheral neuropathy and myelin.


Assuntos
Doenças Desmielinizantes/genética , Neuropatias Diabéticas/patologia , Receptores para Leptina/genética , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Animais , Diabetes Mellitus Tipo 2 , Masculino , Mutação , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/ultraestrutura , Ratos , Ratos Zucker , Células de Schwann/ultraestrutura
11.
Clin Exp Rheumatol ; 35(1): 129-136, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27749214

RESUMO

OBJECTIVES: To determine the role of S100A8/A9 in the pathogenesis of primary Sjögren's syndrome (pSS). METHODS: The serum levels of S100A8/A9 were determined in pSS patients and healthy controls by ELISA. The expression of S100A8/A9 in salivary glands was assessed by immunohistochemistry. The phenotype of S100A8+ and S100A9+ cells was identified using double immunofluorescence. The effects of S100A8/A9 on cytokine production by peripheral blood mononuclear cells (PBMCs) from pSS patients were determined in vitro by flow cytometry. The effects of pro-inflammatory cytokines on S100A8/A9 secretion were additionally investigated in vitro by ELISA in PBMCs from pSS patients and control subjects. RESULTS: Serum levels of S100A8/A9 were significantly increased in pSS patients compared to healthy controls. The tissular expression of S100A8 and S100A9, identified in professional phagocytes (neutrophils, monocytes and plasmacytoid dendritic cells), was increased in the salivary glands of pSS patients and correlated with focus score. In vitro, recombinant S100A8/A9 increased the production of IL-1ß, IL-6, TNF-α, IFN-γ, IL-10, IL-17A and IL-22 by PBMCs. The S100A8/A9-induced increase in TNF-α production in pSS patients was significant relative to controls. Furthermore, IL-1ß, TNF-α, IL-6, and IL-17A stimulated release of S100A8/A9 from PBMCs in pSS patients. CONCLUSIONS: S100A8/A9 is increased in pSS patients contributing to the in vitro increased production of pro-inflammatory cytokines. As such, S100A8/A9 in concert with other cytokines might contribute to the pathogenesis of pSS.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Citocinas/metabolismo , Fagócitos/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Regulação para Cima , Calgranulina A/sangue , Calgranulina B/sangue , Citocinas/farmacologia , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Fagócitos/citologia , Fagócitos/efeitos dos fármacos , Síndrome de Sjogren/sangue
12.
J Neurosci ; 34(22): 7622-38, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24872566

RESUMO

A major portion of spinal cord injury (SCI) cases affect midcervical levels, the location of the phrenic motor neuron (PhMN) pool that innervates the diaphragm. While initial trauma is uncontrollable, a valuable opportunity exists in the hours to days following SCI for preventing PhMN loss and consequent respiratory dysfunction that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxic cell death due to dysregulation of extracellular glutamate homeostasis. GLT1, mainly expressed by astrocytes, is responsible for the vast majority of functional uptake of extracellular glutamate in the CNS, particularly in spinal cord. We found that, in bacterial artificial chromosome-GLT1-enhanced green fluorescent protein reporter mice following unilateral midcervical (C4) contusion SCI, numbers of GLT1-expressing astrocytes in ventral horn and total intraspinal GLT1 protein expression were reduced soon after injury and the decrease persisted for ≥6 weeks. We used intraspinal delivery of adeno-associated virus type 8 (AAV8)-Gfa2 vector to rat cervical spinal cord ventral horn for targeting focal astrocyte GLT1 overexpression in areas of PhMN loss. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in transduction primarily of GFAP(+) astrocytes that persisted for ≥6 weeks postinjury, as well as increased intraspinal GLT1 protein expression. Surprisingly, we found that astrocyte-targeted GLT1 overexpression increased lesion size, PhMN loss, phrenic nerve axonal degeneration, and diaphragm neuromuscular junction denervation, and resulted in reduced functional diaphragm innervation as assessed by phrenic nerve-diaphragm compound muscle action potential recordings. These results demonstrate that GLT1 overexpression via intraspinal AAV-Gfa2-GLT1 delivery exacerbates neuronal damage and increases respiratory impairment following cervical SCI.


Assuntos
Astrócitos/patologia , Vértebras Cervicais , Diafragma/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Membro Anterior/fisiopatologia , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Astrócitos/metabolismo , Diafragma/fisiopatologia , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Membro Anterior/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Nervo Frênico/metabolismo , Nervo Frênico/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
13.
Ann Rheum Dis ; 73(6): 1259-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24385203

RESUMO

OBJECTIVES: To investigate the role of the interleukin (IL)-33-ST2 axis in the pathophysiology of primary Sjögren's syndrome (pSS). METHODS: Serum levels of IL-33 and sST2 were determined by ELISA. The expression of IL-33 and ST2 was investigated in salivary glands (SG) by immunohistochemistry. PBMC were isolated and stimulated with IL-33, IL-12 and IL-23 and the cytokine profile response was examined by flow cytometry. Intracellular cytokine detection of IFNγ and IL-17 was performed by flow cytometry. RESULTS: Serum IL-33 and sST2 levels were increased in pSS patients compared with controls and patients with systemic lupus erythematosus. Expression of IL-33 was upregulated in SG with Chisholm scores of 2 and 3 of pSS patients but comparable with controls for SG with Chisholm score of 4. ST2 expression in SG was downregulated in pSS patients. IL-33 at different concentrations did not increase the secretion of pro-inflammatory cytokines but acted synergistically with IL-12 and IL-23 to promote IFNγ production. NK and NKT cells were identified as main producers of IFNγ in vitro and were found in SG of pSS patients. CONCLUSIONS: IL-33 is released in pSS, and acts with IL-12 and IL-23 to favour the secretion of IFNγ by NK and NKT cells.


Assuntos
Interleucinas/metabolismo , Receptores de Superfície Celular/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Interferon gama/efeitos dos fármacos , Interferon gama/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-12/farmacologia , Interleucina-17/metabolismo , Interleucina-23/farmacologia , Interleucina-33 , Interleucinas/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Síndrome de Sjogren/etiologia
14.
Cell Physiol Biochem ; 31(1): 37-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23343648

RESUMO

BACKGROUND/AIMS: The expression and localization of several distinct glucose transporters (GLUT1, GLUT2, GLUT4, and SGLT1) was recently characterized in the parotid gland of normal rats by quantitative real-time PCR analysis, immunohistochemistry and Western blotting. The major aims of the present study was to compare the mRNA expression of these glucose transporters in both the parotid gland and submaxillary gland of control rats, streptozotocin-induced diabetic rats and hereditarily diabetic Goto-Kakizaki rats. METHODS: Quantitative real-time PCR analysis was performed in the parotid and submaxillary salivary glands and, for purpose of comparison, also in the heart, kidney, liver, lung, muscle and pancreas from control animals and either streptozotocin-treated or Goto-Kakizaki rats. RESULTS: The expression of GLUT4, but not GLUT1 or SGLT1, mRNA was decreased in the diabetic rats. The results also allow comparing both the mRNA expression level of the four glucose transporters in salivary glands and six other organs, and the diabetes-induced changes in such an expression in distinct locations. CONCLUSION: The mRNA expression of the insulin-dependent GLUT4 transporter was the sole to be significantly decreased in the salivary glands of diabetic animals. The possible consequence of such a decrease in terms of the control of salivary glucose concentration requires further investigation.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , RNA Mensageiro/metabolismo , Glândulas Salivares/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Glicemia/análise , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 4/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transportador 1 de Glucose-Sódio/genética
15.
Anat Histol Embryol ; 52(5): 770-777, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37278128

RESUMO

Mesenchymal stem cells (MSCs) are used for regenerative therapy. Dental pulp MSCs make extracted wisdom teeth a useful resource in humans. Preclinical validation of regenerative therapies requires large animal models such as the sheep. Since stem cells can be retrieved from the dental pulp of ovine incisors, the best age to extract a maximal volume of dental pulp needs to be defined. The objective of this ex vivo study was to quantify incisors dental pulp volume, in sheep of various age. Three jaws were dedicated to histology (one per age group); the others were imaged with a computed tomography scanner [3 years-old (n = 9), 4 (n = 3) and 6 (n = 5)]. The incisors dental pulp volume was measured after 3D reconstruction. Multiple linear regression showed that dental pulp volume of ovine incisors decreases with age (ß-estimate = -3.3; p < 0.0001) and teeth position from the more central to the more lateral (ß-estimate = -4.9; p = 0.0009). Weight was not a relevant variable in the regression model. The dental pulp volume ranged from 36.7 to 19.6 mm3 in 3-year-old sheep, from 23.6 to 11.3 in 4-year-old sheep, and from 19.4 to 11.5 in 6-year-old sheep. The pulp volume of the most central teeth (first intermediate) was significantly higher than the most lateral teeth (corner). Haematoxylin-Eosin-Safran of the whole incisors, and of isolated dental pulps demonstrated a similar morphology to that in humans. The first intermediate incisor of 3-year-old sheep should be selected preferentially in preclinical research to retrieve the highest volume of dental pulp.


Assuntos
Incisivo , Células-Tronco Mesenquimais , Ovinos , Humanos , Animais , Incisivo/diagnóstico por imagem , Polpa Dentária/diagnóstico por imagem , Modelos Lineares
16.
Viruses ; 15(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896797

RESUMO

The utility of human neuroblastoma cell lines as in vitro model to study neuro-invasiveness and neuro-virulence of SARS-CoV-2 has been demonstrated by our laboratory and others. The aim of this report is to further characterize the associated cellular responses caused by a pre-alpha SARS-CoV-2 strain on differentiated SH-SY5Y and to prevent its cytopathic effect by using a set of entry inhibitors. The susceptibility of SH-SY5Y to SARS-CoV-2 was confirmed at high multiplicity-of-infection, without viral replication or release. Infection caused a reduction in the length of neuritic processes, occurrence of plasma membrane blebs, cell clustering, and changes in lipid droplets electron density. No changes in the expression of cytoskeletal proteins, such as tubulins or tau, could explain neurite shortening. To counteract the toxic effect on neurites, entry inhibitors targeting TMPRSS2, ACE2, NRP1 receptors, and Spike RBD were co-incubated with the viral inoculum. The neurite shortening could be prevented by the highest concentration of camostat mesylate, anti-RBD antibody, and NRP1 inhibitor, but not by soluble ACE2. According to the degree of entry inhibition, the average amount of intracellular viral RNA was negatively correlated to neurite length. This study demonstrated that targeting specific SARS-CoV-2 host receptors could reverse its neurocytopathic effect on SH-SY5Y.


Assuntos
COVID-19 , Neuroblastoma , Humanos , Neuritos/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
J Neurotrauma ; 40(9-10): 939-951, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36074949

RESUMO

Following spinal cord injury (SCI) the degree of functional (motor, autonomous, or sensory) loss correlates with the severity of nervous tissue damage. An imaging technique able to capture non-invasively and simultaneously the complex mechanisms of neuronal loss, vascular damage, and peri-lesional tissue reorganization is currently lacking in experimental SCI studies. Synchrotron X-ray phase-contrast tomography (SXPCT) has emerged as a non-destructive three-dimensional (3D) neuroimaging technique with high contrast and spatial resolution. In this framework, we developed a multi-modal approach combining SXPCT, histology and correlative methods to study neurovascular architecture in normal and spinal level C4-contused mouse spinal cords (C57BL/6J mice, age 2-3 months). The evolution of SCI lesion was imaged at the cell resolution level during the acute (30 min) and subacute (7 day) phases. Spared motor neurons (MNs) were segmented and quantified in different volumes localized at and away from the epicenter. SXPCT was able to capture neuronal loss and blood-brain barrier breakdown following SCI. Three-dimensional quantification based on SXPCT acquisitions showed no additional MN loss between 30 min and 7 days post-SCI. In addition, the analysis of hemorrhagic (at 30 min) and lesion (at 7 days) volumes revealed a high similarity in size, suggesting no extension of tissue degeneration between early and later time-points. Moreover, glial scar borders were unevenly distributed, with rostral edges being the most extended. In conclusion, SXPCT capability to image at high resolution cellular changes in 3D enables the understanding of the relationship between hemorrhagic events and nervous structure damage in SCI.


Assuntos
Traumatismos da Medula Espinal , Camundongos , Animais , Raios X , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Tomografia
18.
Cell Physiol Biochem ; 29(3-4): 325-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22508040

RESUMO

BACKGROUND/AIMS: Salivary glucose is often considered as being from glandular origin. Little information is available, however, on the possible role of glucose transporters in the secretion of the hexose by salivary glands. The major aim of the present study was to investigate the expression and localization of several distinct glucose transporters in acinar cells of rat parotid glands. METHODS: Quantitative real-time PCR analysis, immunohistochemistry and western blotting techniques were used to assess the presence of SGLT1, GLUT1, GLUT2 and GLUT4 in acinar cells of rat parotid glands. RESULTS: Quantitative real-time PCR documented the expression of SGLT1 and GLUT1 in parotid tissues, with a much lower level of GLUT4 mRNA and no expression of GLUT2 mRNA. Western blot analysis revealed the presence of SGLT1, GLUT1 and GLUT4 proteins, but not GLUT2 proteins in the parotid extract. Immunohistochemistry confirmed these findings. SGLT1 was specifically located at the baso-lateral membrane, co-localizing with Na(+)/K(+) ATPase. GLUT1 was found both at the baso-lateral and apical level. GLUT4 appeared to be also located at the baso-lateral level. However, too little GLUT4 was present to allow co-localization labeling. CONCLUSION: Based on these findings, a model is proposed for the transport of glucose into the acinar cells and thereafter into the acinar lumen.


Assuntos
Células Acinares/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Glândula Parótida/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Células Acinares/citologia , Animais , Transporte Biológico , Membrana Celular/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Imuno-Histoquímica , Rim/citologia , Rim/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Glândula Parótida/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportador 1 de Glucose-Sódio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
19.
Acta Neuropathol ; 123(1): 71-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22094641

RESUMO

Fast anterograde and retrograde axoplasmic transports in neurons rely on the activity of molecular motors and are critical for maintenance of neuronal and synaptic functions. Disturbances of axoplasmic transport have been identified in Alzheimer's disease and in animal models of this disease, but their mechanisms are not well understood. In this study we have investigated the distribution and the level of expression of kinesin light chains (KLCs) (responsible for binding of cargos during anterograde transport) and of dynein intermediate chain (DIC) (a component of the dynein complex during retrograde transport) in frontal cortex and cerebellar cortex of control subjects and Alzheimer's disease patients. By immunoblotting, we found a significant decrease in the levels of expression of KLC1 and 2 and DIC in the frontal cortex, but not in the cerebellar cortex, of Alzheimer's disease patients. A significant decrease in the levels of synaptophysin and of tubulin-ß3 proteins, two neuronal markers, was also observed. KLC1 and DIC immunoreactivities did not co-localize with neurofibrillary tangles. The mean mRNA levels of KLC1, 2 and DIC were not significantly different between controls and AD patients. In SH-SY5Y neural cells, GSK-3ß phosphorylated KLC1, a change associated to decreased association of KLC1 with its cargoes. Increased levels of active GSK-3ß and of phosphorylated KLC1 were also observed in AD frontal cortex. We suggest that reduction of KLCs and DIC proteins in AD cortex results from both reduced expression and neuronal loss, and that these reductions and GSK-3ß-mediated phosphorylation of KLC1 contribute to disturbances of axoplasmic flows and synaptic integrity in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Transporte Axonal/fisiologia , Córtex Cerebelar/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Feminino , Lobo Frontal/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Emaranhados Neurofibrilares/metabolismo , Sinaptofisina/metabolismo , Proteínas tau/metabolismo
20.
J Am Soc Nephrol ; 22(10): 1834-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21885671

RESUMO

Abrupt osmotic changes during rapid correction of chronic hyponatremia result in demyelinative brain lesions, but the sequence of events linking rapid osmotic changes to myelin loss is not yet understood. Here, in a rat model of osmotic demyelination syndrome, we found that massive astrocyte death occurred after rapid correction of hyponatremia, delineating the regions of future myelin loss. Astrocyte death caused a disruption of the astrocyte-oligodendrocyte network, rapidly upregulated inflammatory cytokines genes, and increased serum S100B, which predicted clinical manifestations and outcome of osmotic demyelination. These results support a model for the pathophysiology of osmotic brain injury in which rapid correction of hyponatremia triggers apoptosis in astrocytes followed by a loss of trophic communication between astrocytes and oligodendrocytes, secondary inflammation, microglial activation, and finally demyelination.


Assuntos
Astrócitos/efeitos dos fármacos , Doenças Desmielinizantes/induzido quimicamente , Hiponatremia/tratamento farmacológico , Solução Salina Hipertônica/efeitos adversos , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Morte Celular/efeitos dos fármacos , Conexinas/metabolismo , Doenças Desmielinizantes/sangue , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica , Hipertrofia/induzido quimicamente , Hiponatremia/sangue , Linfócitos/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Bainha de Mielina/patologia , Fatores de Crescimento Neural/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Pressão Osmótica , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Sódio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA