Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 47(9): 725-727, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35606213

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented obstacles for new investigators to traverse. The pandemic's impact exacerbates inequities for groups historically excluded from science. We provide recommendations to support junior faculty, including women and faculty from groups historically excluded from science, in establishing laboratories during the pandemic and foreseeable future.


Assuntos
COVID-19 , Pandemias , Feminino , Humanos , Laboratórios
2.
Trends Biochem Sci ; 47(10): 814-818, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644775

RESUMO

The process of starting a laboratory varies between institutions. However, there are universal tasks all investigators will need to address when launching their laboratories. In this piece, we provide a brief summary of considerations for incoming group leaders to centralize this information for the scientific community.


Assuntos
Laboratórios , Pesquisadores , Humanos
3.
J Virol ; 97(4): e0022523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039663

RESUMO

Acute and chronic viral infections result in the differentiation of effector and exhausted T cells with functional and phenotypic differences that dictate whether the infection is cleared or progresses to chronicity. High CD38 expression has been observed on CD8+ T cells across various viral infections and tumors in patients, suggesting an important regulatory function for CD38 on responding T cells. Here, we show that CD38 expression was increased and sustained on exhausted CD8+ T cells following chronic lymphocytic choriomeningitis virus (LCMV) infection, with lower levels observed on T cells from acute LCMV infection. We uncovered a cell-intrinsic role for CD38 expression in regulating the survival of effector and exhausted CD8+ T cells. We observed increased proliferation and function of Cd38-/- CD8+ progenitor exhausted T cells compared to those of wild-type (WT) cells. Furthermore, decreased oxidative phosphorylation and glycolytic potential were observed in Cd38-/- CD8+ T cells during chronic but not acute LCMV infection. Our studies reveal that CD38 has a dual cell-intrinsic function in CD8+ T cells, where it decreases proliferation and function yet supports their survival and metabolism. These findings show that CD38 is not only a marker of T cell activation but also has regulatory functions on effector and exhausted CD8+ T cells. IMPORTANCE Our study shows how CD38 expression is regulated on CD8+ T cells responding during acute and chronic viral infection. We observed higher CD38 levels on CD8+ T cells during chronic viral infection compared to levels during acute viral infection. Deleting CD38 had an important cell-intrinsic function in ensuring the survival of virus-specific CD8+ T cells throughout the course of viral infection. We found defective metabolism in Cd38-/- CD8+ T cells arising during chronic infection and changes in their progenitor T cell phenotype. Our studies revealed a dual cell-intrinsic role for CD38 in limiting proliferation and granzyme B production in virus-specific exhausted T cells while also promoting their survival. These data highlight new avenues for research into the mechanisms through which CD38 regulates the survival and metabolism of CD8+ T cell responses to viral infections.


Assuntos
Coriomeningite Linfocítica , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/genética , Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/genética , Infecção Persistente , Animais , Camundongos , Sobrevivência Celular/genética , Regulação para Cima , Proliferação de Células/genética
4.
PLoS Comput Biol ; 19(12): e1011652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060459

RESUMO

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873055

RESUMO

Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via ß-arrestin-2 (ß-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a ß-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates ß-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on ß-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-ß-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, ß-arr2-driven signaling pathways in caveolae.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor PAR-1/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , beta-Arrestina 2/metabolismo , Anilidas/farmacologia , Apoptose/fisiologia , Células Endoteliais/fisiologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Lactonas/farmacologia , Metanol/farmacologia , Organofosfonatos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Inibidores da Agregação Plaquetária/farmacologia , Proteína C/genética , Proteínas Proto-Oncogênicas c-akt/genética , Piridinas/farmacologia , Pirrolidinas/farmacologia , Receptor PAR-1/genética , Receptores de Esfingosina-1-Fosfato/genética , Sulfonas/farmacologia , beta-Arrestina 2/genética
6.
Cell Mol Life Sci ; 74(2): 231-243, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491296

RESUMO

Chronic inflammation drives pathologies associated with type 2 diabetes (T2D) and breast cancer. Obesity-driven inflammation may explain increased risk and mortality of breast cancer with T2D reported in the epidemiology literature. Therapeutic approaches to target inflammation in both T2D and cancer have so far fallen short of the expected improvements in disease pathogenesis or outcomes. The targeting of epigenetic regulators of cytokine transcription and cytokine signaling offers one promising, untapped approach to treating diseases driven by inflammation. Recent work has deeply implicated the Bromodomain and Extra-Terminal domain (BET) proteins, which are acetylated histone "readers", in epigenetic regulation of inflammation. This review focuses on inflammation associated with T2D and breast cancer, and the possibility of targeting BET proteins as an approach to regulating inflammation in the clinic. Understanding inflammation in the context of BET protein regulation may provide a basis for designing promising therapeutics for T2D and breast cancer.


Assuntos
Neoplasias da Mama/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Inflamação/genética , Proteínas Nucleares/metabolismo , Feminino , Humanos , Obesidade/genética
7.
Mol Cell Proteomics ; 14(1): 15-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25316709

RESUMO

The differentiation of monocytes into macrophages and dendritic cells involves mechanisms for activation of the innate immune system in response to inflammatory stimuli, such as pathogen infection and environmental cues. Epigenetic reprogramming is thought to play an important role during monocyte differentiation. Complementary to cell surface markers, the characterization of monocytic cell lineages by mass spectrometry based protein/histone expression profiling opens a new avenue for studying immune cell differentiation. Here, we report the application of mass spectrometry and bioinformatics to identify changes in human monocytes during their differentiation into macrophages and dendritic cells. Our data show that linker histone H1 proteins are significantly down-regulated during monocyte differentiation. Although highly enriched H3K9-methyl/S10-phos/K14-acetyl tri-modification forms of histone H3 were identified in monocytes and macrophages, they were dramatically reduced in dendritic cells. In contrast, histone H4 K16 acetylation was found to be markedly higher in dendritic cells than in monocytes and macrophages. We also found that global hyperacetylation generated by the nonspecific histone deacetylase HDAC inhibitor Apicidin induces monocyte differentiation. Together, our data suggest that specific regulation of inter- and intra-histone modifications including H3 K9 methylation, H3 S10 phosphorylation, H3 K14 acetylation, and H4 K16 acetylation must occur in concert with chromatin remodeling by linker histones for cell cycle progression and differentiation of human myeloid cells into macrophages and dendritic cells.


Assuntos
Diferenciação Celular/fisiologia , Monócitos/citologia , Monócitos/metabolismo , Acetilação , Adulto , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Epigênese Genética , Histonas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Metilação , Fosforilação , Proteômica
8.
Mediators Inflamm ; 2015: 196297, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633920

RESUMO

High levels of serum long chain saturated fatty acids (LCSFAs) have been associated with inflammation in type 2 diabetes. Dietary SFAs can promote inflammation, the secretion of IgG antibodies, and secretion of the proinflammatory cytokine IL-1ß. This study characterizes anti-LCSFA IgG antibodies from patients with type 2 diabetes. Serum samples from several cohorts with type 2 diabetes were analyzed for the presence of anti-LCSFA IgG, the cytokine IL-1ß, and nonesterified fatty acids. Anti-LCSFA IgG was isolated from patient samples and used for in vitro characterization of avidity and specificity. A cohort participating in En Balance, a diabetes health education program that improved diabetes management, tested positive for anti-LCSFA IgG. Following the 3-month program, the cohort showed a significant reduction in anti-LCSFA IgG levels. Anti-LCSFA antibodies isolated from these patients demonstrated high avidity, were specific for long chain SFAs, and correlated with serum fatty acids in patients with managed type 2 diabetes. Interestingly, anti-LCSFA IgG neutralized PA-induced IL-1ß secretion by dendritic cells. Our data shows that nonesterified SFAs are recognized by IgG antibodies present in human blood. The identification of anti-LCSFA IgG antibodies in human sera establishes a basis for further exploration of lipid induced immune responses in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Ácidos Graxos/imunologia , Imunoglobulina G/sangue , Adulto , Idoso , Especificidade de Anticorpos , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Interleucina-1beta/sangue , Masculino , Pessoa de Meia-Idade , Ácido Palmítico/imunologia
9.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915633

RESUMO

Bacterial viruses (known as "phages") shape the ecology and evolution of microbial communities, making them promising targets for microbiome engineering. However, knowledge of phage biology is constrained because it remains difficult to study phage transmission dynamics within multi-member communities and living animal hosts. We therefore created "Phollow": a live imaging-based approach for tracking phage replication and spread in situ with single-virion resolution. Combining Phollow with optically transparent zebrafish enabled us to directly visualize phage outbreaks within the vertebrate gut. We observed that virions can be rapidly taken up by intestinal tissues, including by enteroendocrine cells, and quickly disseminate to extraintestinal sites, including the liver and brain. Moreover, antibiotics trigger waves of interbacterial transmission leading to sudden shifts in spatial organization and composition of defined gut communities. Phollow ultimately empowers multiscale investigations connecting phage transmission to transkingdom interactions that have the potential to open new avenues for viral-based microbiome therapies.

10.
Elife ; 122024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224289

RESUMO

Inter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by 'brute force' surveys of all genes within RNA-sequencing measures across tissues within a population. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or high-fat/high-sucrose (HFHS) diet. Variation of genes such as FGF21, ADIPOQ, GCG, and IL6 showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liver PCSK9) and genes encoding enzymes producing metabolites (adipose PNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource as gene-derived correlations across tissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways, and network architectures across metabolic organs.


Assuntos
Pró-Proteína Convertase 9 , Transdução de Sinais , Humanos , Animais , Camundongos , Homeostase , Adiposidade
11.
Front Endocrinol (Lausanne) ; 14: 1279878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260148

RESUMO

Introduction: Female reproductive function depends on a choreographed sequence of hormonal secretion and action, where specific stresses such as inflammation exert profound disruptions. Specifically, acute LPS-induced inflammation inhibits gonadotropin production and secretion from the pituitary, thereby impacting the downstream production of sex hormones. These outcomes have only been observed in acute inflammatory stress and little is known about the mechanisms by which chronic inflammation affects reproduction. In this study we seek to understand the chronic effects of LPS on pituitary function and consequent luteinizing and follicle stimulating hormone secretion. Methods: A chronic inflammatory state was induced in female mice by twice weekly injections with LPS over 6 weeks. Serum gonadotropins were measured and bulk RNAseq was performed on the pituitaries from these mice, along with basic measurements of reproductive biology. Results: Surprisingly, serum luteinizing and follicle stimulating hormone was not inhibited and instead we found it was increased with repeated LPS treatments. Discussion: Analysis of bulk RNA-sequencing of murine pituitary revealed paracrine activation of TGFß pathways as a potential mechanism regulating FSH secretion in response to chronic LPS. These results provide a framework with which to begin dissecting the impacts of chronic inflammation on reproductive physiology.


Assuntos
Lipopolissacarídeos , Doenças da Hipófise , Feminino , Animais , Camundongos , Hipófise , Perfilação da Expressão Gênica , Transcriptoma , Gonadotropinas Hipofisárias , Inflamação/induzido quimicamente
12.
Sci Rep ; 10(1): 13063, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747664

RESUMO

The mechanisms mediating suppression of reproduction in response to decreased nutrient availability remain undefined, with studies suggesting regulation occurs within the hypothalamus, pituitary, or gonads. By manipulating glucose utilization and GLUT1 expression in a pituitary gonadotrope cell model and in primary gonadotropes, we show GLUT1-dependent stimulation of glycolysis, but not mitochondrial respiration, by the reproductive neuropeptide GnRH. GnRH stimulation increases gonadotrope GLUT1 expression and translocation to the extracellular membrane. Maximal secretion of the gonadotropin Luteinizing Hormone is supported by GLUT1 expression and activity, and GnRH-induced glycolysis is recapitulated in primary gonadotropes. GLUT1 expression increases in vivo during the GnRH-induced ovulatory LH surge and correlates with GnRHR. We conclude that the gonadotropes of the anterior pituitary sense glucose availability and integrate this status with input from the hypothalamus via GnRH receptor signaling to regulate reproductive hormone synthesis and secretion.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glicólise , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Luteinizante/metabolismo , Animais , Células Cultivadas , Feminino , Glucose/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores LHRH/metabolismo
13.
J Diabetes Res ; 2020: 4826704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377521

RESUMO

PURPOSE: En Balance, a culturally sensitive diabetes education program, improves glycemic control in Hispanics with type 2 diabetes. The program emphasized diet, physical activity, and other factors important for glycemic control. However, the individual contributions of these education factors are unclear. The purpose of this study is to assess the contribution of physical activity to the success of En Balance in improving the health of Mexican Americans with type 2 diabetes. METHODS: A retrospective study was conducted with plasma samples collected pre- and post-3-month study. Samples from 58 (18 males and 40 females) Hispanic subjects with type 2 diabetes were analyzed for the concentration of kynurenines, known to decrease in response to exercise. After three months, health outcomes for the active group (decreased kynurenines) and the rest of the cohort were evaluated by paired Wilcoxon signed-rank test. RESULTS: Half of the subjects had increased kynurenine levels at the end of the educational program. We found that the subjects in the active group with decreased kynurenine concentrations displayed statistically greater improvements in fasting blood glucose, A1C, cholesterol, and triglycerides despite weight loss being higher in the group with increased kynurenine concentrations. CONCLUSIONS: En Balance participants with decreased kynurenine levels had significantly improved glycemic control. These data suggest that physical activity significantly contributes to the success of the En Balance education program. This analysis indicates that diabetes public health educators should emphasize the benefit of physical activity on glycemic control even in the absence of major weight loss.


Assuntos
Glicemia/análise , Dieta , Exercício Físico , Estilo de Vida Saudável , Hispânico ou Latino , Educação de Pacientes como Assunto , Adulto , Idoso , Diabetes Mellitus Tipo 2/sangue , Feminino , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
14.
Cell Metab ; 32(1): 44-55.e6, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402267

RESUMO

Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes.


Assuntos
Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Adulto , Envelhecimento/metabolismo , Humanos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo
15.
Endocrinology ; 160(11): 2543-2555, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504396

RESUMO

A defining characteristic of the hypothalamus-pituitary-gonad reproductive endocrine axis is the episodic secretion of the pituitary gonadotropin hormones LH and FSH by the anterior pituitary gonadotropes. Hormone secretion is dictated by pulsatile stimulation, with GnRH released by hypothalamic neurons that bind and activate the G protein-coupled GnRH receptor expressed by gonadotropes. Hormone secretion and synthesis of gonadotropins are influenced by the amplitude and frequency of GnRH stimulation; variation in either affects the proportion of LH and FSH secreted and the differential regulation of hormone subunit gene expression. Therefore, proper decoding of GnRH signals is essential for appropriate gonadotropin synthesis and secretion. The GnRH receptor robustly activates downstream signaling cascades to facilitate exocytosis and stimulate gene expression and protein synthesis. It is necessary to rapidly quench signaling to preserve sensitivity and adaptability to changing pulse patterns. Reactive oxygen species (ROS) generated by receptor-activated oxidases fulfill the role of rapid signaling intermediates that facilitate robust and transient signaling. However, excess ROS can be detrimental and, unchecked, can confuse signal interpretation. We demonstrate that sulfiredoxin (SRXN1), an ATP-dependent reductase, is essential for normal responses to GnRH receptor signaling and plays a central role in resolution of ROS induced by GnRH stimulation. SRXN1 expression is mitogen-activated protein kinase dependent, and knockdown reduces Lhb and Fshb glycoprotein hormone subunit mRNA and promoter activity. Loss of SRXN1 leads to increased basal and GnRH-stimulated ROS levels. We conclude that SRXN1 is essential for normal responses to GnRH stimulation and plays an important role in ROS management.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxinas/metabolismo , Animais , Linhagem Celular , Sistema de Sinalização das MAP Quinases , Camundongos , NADPH Oxidases/metabolismo , Oxirredução
16.
Endocrinology ; 160(8): 1999-2014, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188427

RESUMO

Gonadotropin secretion, which is elicited by GnRH stimulation of the anterior pituitary gonadotropes, is a critical feature of reproductive control and the maintenance of fertility. In addition, activation of the GnRH receptor (GnRHR) regulates transcription and translation of multiple factors that regulate the signaling response and synthesis of gonadotropins. GnRH stimulation results in a broad redistribution of mRNA between active and inactive polyribosomes within the cell, but the mechanism of redistribution is not known. The RNA-binding protein embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) binds to AU-rich elements in mRNA and is one of the most abundant mRNA-binding proteins in eukaryotic cells. It is known to serve as a core component of RNA-binding complexes that direct the fate of mRNA. In LßT2 gonadotropes, we showed that ELAVL1 binds to multiple mRNAs encoding factors that are crucial for gonadotropin synthesis and release. Association with some mRNAs is GnRH sensitive but does not correlate with abundance of binding. We also showed MAPK-dependent changes in intracellular localization of ELAVL1 in response to GnRH stimulation. Knockdown of ELAVL1 gene expression resulted in reduced Lhb and Gnrhr mRNA levels, reduced cell surface expression of GnRHR, and reduced LH secretion in response to GnRH stimulation. Overall, these observations not only support the role of ELAVL1 in GnRHR-mediated regulation of gene expression and LH secretion but also indicate that other factors may contribute to the precise fate of mRNA in response to GnRH stimulation of gonadotropes.


Assuntos
Proteína Semelhante a ELAV 1/fisiologia , Hormônio Liberador de Gonadotropina/farmacologia , Receptores LHRH/genética , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Regulação da Expressão Gênica , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
17.
Cell Metab ; 30(3): 447-461.e5, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31378464

RESUMO

Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, ß oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised ß oxidation to promote disease-predictive inflammation in human T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Ativação Linfocitária/imunologia , Células Th17/imunologia , Adulto , Idoso , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/genética , Células Cultivadas , Estudos Transversais , Citocinas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glicólise/genética , Humanos , Inflamação/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Obesidade/metabolismo , Oxirredução , Transfecção , Adulto Jovem
19.
PLoS One ; 12(5): e0176793, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28463985

RESUMO

Palmitic acid (PA) and other saturated fatty acids are known to stimulate pro-inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). However, the molecular mechanism responsible for fatty acid stimulation of TLR4 remains unknown. Here, we demonstrate that PA functions as a ligand for TLR4 on human monocyte derived dendritic cells (MoDCs). Hydrophobicity protein modeling indicated PA can associate with the hydrophobic binding pocket of TLR4 adaptor protein MD-2. Isothermal titration calorimetry quantified heat absorption that occurred during PA titration into TLR4/MD2, indicating that PA binds to TLR4/MD2. Treatment of human MoDCs with PA resulted in endocytosis of TLR4, further supporting the function of PA as a TLR4 agonist. In addition, PA stimulated DC maturation and activation based on the upregulation of DC costimulatory factors CD86 and CD83. Further experiments showed that PA induced TLR4 dependent secretion of the pro-inflammatory cytokine IL-1ß. Lastly, our experimental data show that PA stimulation of NF-κB canonical pathway activation is regulated by TLR4 signaling and that reactive oxygen species may be important in upregulating this pro-inflammatory response. Our experiments demonstrate for the first time that PA activation of TLR4 occurs in response to direct molecular interactions between PA and MD-2. In summary, our findings suggest a likely molecular mechanism for PA induction of pro-inflammatory immune responses in human dendritic cells expressing TLR4.


Assuntos
Células Dendríticas/imunologia , Interleucina-1beta/metabolismo , Ácido Palmítico/metabolismo , Receptor 4 Toll-Like/metabolismo , Antígenos CD/metabolismo , Antígenos CD1/metabolismo , Antígeno B7-2/metabolismo , Sítios de Ligação , Caspase 1/metabolismo , Células Cultivadas , Células Dendríticas/citologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulinas/metabolismo , Fatores Imunológicos/administração & dosagem , Antígeno 96 de Linfócito/metabolismo , Glicoproteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ácido Palmítico/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Antígeno CD83
20.
PLoS One ; 12(2): e0170975, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178278

RESUMO

Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96) analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.


Assuntos
Metabolismo Energético , Imunidade , Mitocôndrias/metabolismo , Algoritmos , Biomarcadores , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Espaço Extracelular/metabolismo , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Metaboloma , Metabolômica/métodos , Mitocôndrias/imunologia , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA