Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 192(8): 533, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32691241

RESUMO

The Ganga River is facing mounting environmental pressures due to rapidly increasing human population, urbanisation, industrialisation and agricultural intensification, resulting in worsening water quality, ecological status and impacts on human health. A combined inorganic chemical, algal and bacterial survey (using flow cytometry and 16S rRNA gene sequencing) along the upper and middle Ganga (from the Himalayan foothills to Kanpur) was conducted under pre-monsoon conditions. The upper Ganga had total phosphorus (TP) and total dissolved nitrogen concentrations of less than 100 µg l-1 and 1.0 mg l-1, but water quality declined at Kannauj (TP = 420 µg l-1) due to major nutrient pollution inputs from human-impacted tributaries (principally the Ramganga and Kali Rivers). The phosphorus and nitrogen loads in these two tributaries and the Yamuna were dominated by soluble reactive phosphorus and ammonium, with high bacterial loads and large numbers of taxa indicative of pathogen and faecal organisms, strongly suggesting sewage pollution sources. The high nutrient concentrations, low flows, warm water and high solar radiation resulted in major algal blooms in the Kali and Ramganga, which greatly impacted the Ganga. Microbial communities were dominated by members of the Phylum Proteobacteria, Bacteriodetes and Cyanobacteria, with communities showing a clear upstream to downstream transition in community composition. To improve the water quality of the middle Ganga, and decrease ecological and human health risks, future mitigation must reduce urban wastewater inputs in the urbanised tributaries of the Ramganga, Kali and Yamuna Rivers.


Assuntos
Poluentes Químicos da Água/análise , Qualidade da Água , Monitoramento Ambiental , Eutrofização , Humanos , Índia , Nitrogênio/análise , Nutrientes , Fósforo/análise , RNA Ribossômico 16S
2.
J Pharmacol Exp Ther ; 353(2): 340-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736418

RESUMO

In normal physiologic responses to injury and infection, inflammatory cells enter tissue and sites of inflammation through a chemotactic process regulated by several families of proteins, including inflammatory chemokines, a family of small inducible cytokines. In neutrophils, chemokines chemokine (CXC motif) ligand 1 (CXCL1) and CXCL8 are potent chemoattractants and activate G protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXCR2. Several small-molecule antagonists of CXCR2 have been developed to inhibit the inflammatory responses mediated by this receptor. Here, we present the data describing the pharmacology of AZD5069 [N-(2-(2,3-difluorobenzylthio)-6-((2R,3S)-3,4-dihydroxybutan-2-yloxy)[2,4,5,6-(13)C4, 1,3-(15)N2]pyrimidin-4-yl)azetidine-1-sulfonamide,[(15)N2,(13)C4]N-(2-(2,3-difluoro-6-[3H]-benzylthio)-6-((2R,3S)-3,4-dihydroxybutan-2-yloxy)pyrimidin-4-yl)azetidine-1-sulfonamide], a novel antagonist of CXCR2. AZD5069 was shown to inhibit binding of radiolabeled CXCL8 to human CXCR2 with a pIC50 value of 9.1. Furthermore, AZD5069 inhibited neutrophil chemotaxis, with a pA2 of approximately 9.6, and adhesion molecule expression, with a pA2 of 6.9, in response to CXCL1. AZD5069 was a slowly reversible antagonist of CXCR2 with effects of time and temperature evident on the pharmacology and binding kinetics. With short incubation times, AZD5069 appeared to have an antagonist profile with insurmountable antagonism of calcium response curves. This behavior was also observed in vivo in an acute lipopolysaccharide-induced lung inflammation model. Altogether, the data presented here show that AZD5069 represents a novel, potent, and selective CXCR2 antagonist with potential as a therapeutic agent in inflammatory conditions.


Assuntos
Pirimidinas/farmacologia , Receptores de Interleucina-8B/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Quimiotaxia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Interleucina-8/metabolismo , Cinética , Lipopolissacarídeos/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Pirimidinas/uso terapêutico , Ratos , Receptores de Interleucina-8B/metabolismo , Especificidade por Substrato , Sulfonamidas/uso terapêutico , Temperatura
3.
Mutagenesis ; 28(2): 233-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23408845

RESUMO

AZD9708 is a new chemical entity with selective and long-acting ß2-agonistic properties currently being evaluated by AstraZeneca for potential use in treatment of respiratory diseases by the inhaled route. As part of the toxicological characterisation of this compound, an increased incidence of micronucleated immature erythrocytes (MIEs) was seen in the bone marrow of rats following single intravenous doses near the maximum tolerated. This effect was seen in the absence of in vitro genotoxicity in bacterial and mammalian cells and no consistent evidence of in vivo DNA damage in the the bone marrow or liver using the comet assay was observed. Because of the lack of signals for mutagenic potential, combined with the observation that MIE frequencies appeared to be increased in only some of the rats and the clearest response was seen at the intermediate dose, it was hypothesised that the effect was secondary to ß2-adrenergic receptor overstimulation. Because it appears that this has not been previously described for ß2-agonists and because pharmacodynamic/pharmacokinetic factors may influence the response, studies using repeated dosing were performed to investigate whether this would lead to compound-induced tachyphylaxis with tolerance induction and decreased responses indicated by ß2-effect biomarkers. A series of experiments confirmed that a sequence of five escalating daily doses leading to systemic exposure corresponding to that after a single dose led to symptomatic tolerance, declining or diminished effects on plasma biomarkers of ß2-effects (plasma glucose and potassium) and elimination of the micronucleus response. This suggests that the increased MIE frequencies after single doses of AZD9708 are secondary to physiological overstimulation of ß2-adrenergic receptors, not a consequence of genotoxicity.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Benzotiazóis/farmacologia , Medula Óssea/efeitos dos fármacos , Testes para Micronúcleos/métodos , beta-Alanina/análogos & derivados , Animais , Glicemia/análise , Glicemia/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Mutagênicos/toxicidade , Potássio/sangue , Ratos , Ratos Wistar , Receptores Adrenérgicos/metabolismo , beta-Alanina/farmacologia
4.
Water Res ; 211: 118054, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066262

RESUMO

Large river systems, such as the River Ganges (Ganga), provide crucial water resources for the environment and society, yet often face significant challenges associated with cumulative impacts arising from upstream environmental and anthropogenic influences. Understanding the complex dynamics of such systems remains a major challenge, especially given accelerating environmental stressors including climate change and urbanization, and due to limitations in data and process understanding across scales. An integrated approach is required which robustly enables the hydrogeochemical dynamics and underpinning processes impacting water quality in large river systems to be explored. Here we develop a systematic approach for improving the understanding of hydrogeochemical dynamics and processes in large river systems, and apply this to a longitudinal survey (> 2500 km) of the River Ganges (Ganga) and key tributaries in the Indo-Gangetic basin. This framework enables us to succinctly interpret downstream water quality trends in response to the underpinning processes controlling major element hydrogeochemistry across the basin, based on conceptual water source signatures and dynamics. Informed by a 2019 post-monsoonal survey of 81 river bank-side sampling locations, the spatial distribution of a suite of selected physico-chemical and inorganic parameters, combined with segmented linear regression, reveals minor and major downstream hydrogeochemical transitions. We use this information to identify five major hydrogeochemical zones, characterized, in part, by the inputs of key tributaries, urban and agricultural areas, and estuarine inputs near the Bay of Bengal. Dominant trends are further explored by investigating geochemical relationships (e.g. Na:Cl, Ca:Na, Mg:Na, Sr:Ca and NO3:Cl), and how water source signatures and dynamics are modified by key processes, to assess the relative importance of controls such as dilution, evaporation, water-rock interactions (including carbonate and silicate weathering) and anthropogenic inputs. Mixing/dilution between sources and water-rock interactions explain most regional trends in major ion chemistry, although localized controls plausibly linked to anthropogenic activities are also evident in some locations. Temporal and spatial representativeness of river bank-side sampling are considered by supplementary sampling across the river at selected locations and via comparison to historical records. Limitations of such large-scale longitudinal sampling programs are discussed, as well as approaches to address some of these inherent challenges. This approach brings new, systematic insight into the basin-wide controls on the dominant geochemistry of the River Ganga, and provides a framework for characterising dominant hydrogeochemical zones, processes and controls, with utility to be transferable to other large river systems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Índia , Rios , Poluentes Químicos da Água/análise , Qualidade da Água , Tempo (Meteorologia)
5.
Sci Rep ; 12(1): 3114, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210470

RESUMO

On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories.


Assuntos
SARS-CoV-2
7.
Nat Chem Biol ; 4(11): 700-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18849972

RESUMO

Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low concentrations and a defensive cytotoxin at higher concentrations. The high active site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock and cancer. Our crystal structures and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a new specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents toward remote specificity pockets, which become accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active site conservation.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Óxido Nítrico Sintase/antagonistas & inibidores , Sequência de Aminoácidos , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Bovinos , Cristalografia por Raios X , Modelos Animais de Doenças , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Humanos , Isoenzimas/antagonistas & inibidores , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Quinazolinas/química , Quinazolinas/farmacologia , Ratos
8.
J Environ Qual ; 49(6): 1703-1716, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33459392

RESUMO

The dynamics and processes of nutrient cycling and release were examined for a lowland wetland-pond system, draining woodland in southern England. Hydrochemical and meteorological data were analyzed from 1997 to 2017, along with high-resolution in situ sensor measurements from 2016 to 2017. The results showed that even a relatively pristine wetland can become a source of highly bioavailable phosphorus (P), nitrogen (N), and silicon (Si) during low-flow periods of high ecological sensitivity. The drivers of nutrient release were primary production and accumulation of biomass, which provided a carbon (C) source for microbial respiration and, via mineralization, a source of bioavailable nutrients for P and N co-limited microorganisms. During high-intensity nutrient release events, the dominant N-cycling process switched from denitrification to nitrate ammonification, and a positive feedback cycle of P and N release was sustained over several months during summer and fall. Temperature controls on microbial activity were the primary drivers of short-term (day-to-day) variability in P release, with subdaily (diurnal) fluctuations in P concentrations driven by water body metabolism. Interannual relationships between nutrient release and climate variables indicated "memory" effects of antecedent climate drivers through accumulated legacy organic matter from the previous year's biomass production. Natural flood management initiatives promote the use of wetlands as "nature-based solutions" in climate change adaptation, flood management, and soil and water conservation. This study highlights potential water quality trade-offs and shows how the convergence of climate and biogeochemical drivers of wetland nutrient release can amplify background nutrient signals by mobilizing legacy nutrients, causing water quality impairment and accelerating eutrophication risk.


Assuntos
Nitrogênio , Fósforo , Inglaterra , Eutrofização , Nitrogênio/análise , Nutrientes , Fósforo/análise , Áreas Alagadas
9.
Mol Pharmacol ; 74(5): 1193-202, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18676678

RESUMO

The chemokine receptors CXCR1 and CXCR2 are G-protein-coupled receptors (GPCRs) implicated in mediating cellular functions associated with the inflammatory response. Potent CXCR2 receptor antagonists have been discovered, some of which have recently entered clinical development. The aim of this study was to identify key amino acid residue differences between CXCR1 and CXCR2 that influence the relative antagonism by two compounds that have markedly different chemical structures. By investigating the effects of domain switching and point mutations, we found that the second extracellular loop, which contained significant amino acid sequence diversity, was not important for compound antagonism. We were surprised to find that switching the intracellular C-terminal 60 amino acid domains of CXCR1 and CXCR2 caused an apparent reversal of antagonism at these two receptors. Further investigation showed that a single amino acid residue, lysine 320 in CXCR2 and asparagine 311 in CXCR1, plays a predominant role in describing the relative antagonism of the two compounds. Homology modeling studies based on the structure of bovine rhodopsin indicated a potential intracellular antagonist binding pocket involving lysine 320. We conclude that residue 320 in CXCR2 forms part of a potential allosteric binding pocket on the intracellular side of the receptor, a site that is distal to the orthosteric site commonly assumed to be the location of antagonist binding to GPCRs. The existence of a common intracellular allosteric binding site at GPCRs related to CXCR2 may be of value in the design of novel antagonists for therapeutic intervention.


Assuntos
Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Linhagem Celular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ensaio Radioligante , Receptores de Interleucina-8A/química , Receptores de Interleucina-8A/efeitos dos fármacos , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/efeitos dos fármacos , Receptores de Interleucina-8B/genética , Homologia de Sequência de Aminoácidos
10.
Nat Rev Drug Discov ; 17(3): 167-181, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29348681

RESUMO

In 2011, AstraZeneca embarked on a major revision of its research and development (R&D) strategy with the aim of improving R&D productivity, which was below industry averages in 2005-2010. A cornerstone of the revised strategy was to focus decision-making on five technical determinants (the right target, right tissue, right safety, right patient and right commercial potential). In this article, we describe the progress made using this '5R framework' in the hope that our experience could be useful to other companies tackling R&D productivity issues. We focus on the evolution of our approach to target validation, hit and lead optimization, pharmacokinetic/pharmacodynamic modelling and drug safety testing, which have helped improve the quality of candidate drug nomination, as well as the development of the right culture, where 'truth seeking' is encouraged by more rigorous and quantitative decision-making. We also discuss where the approach has failed and the lessons learned. Overall, the continued evolution and application of the 5R framework are beginning to have an impact, with success rates from candidate drug nomination to phase III completion improving from 4% in 2005-2010 to 19% in 2012-2016.


Assuntos
Pesquisa Biomédica/normas , Tomada de Decisões Gerenciais , Indústria Farmacêutica , Drogas em Investigação/uso terapêutico , Eficiência Organizacional , Projetos de Pesquisa , Pesquisa/organização & administração , Ensaios Clínicos como Assunto , Eficiência , Humanos , Cultura Organizacional , Pesquisa/normas
11.
J Med Chem ; 46(6): 913-6, 2003 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-12620067

RESUMO

The discovery of a novel class of nitric oxide synthase (NOS) inhibitors, 2-substituted 1,2-dihydro-4-quinazolinamines, and the related 4'-aminospiro[piperidine-4,2'(1'H)-quinazolin]-4'-amines is described. Members of both series exhibit nanomolar potency and high selectivity for the inducible isoform of the enzyme (i-NOS) relative to the constitutive isoforms in vitro. Efficacy in acute and chronic animal models of inflammatory disease following oral administration has also been demonstrated using these compounds.


Assuntos
Inibidores Enzimáticos/síntese química , Óxido Nítrico Sintase/antagonistas & inibidores , Quinazolinas/síntese química , Doença Aguda , Administração Oral , Aminas/síntese química , Aminas/química , Aminas/farmacologia , Animais , Artrite Experimental/tratamento farmacológico , Linhagem Celular , Doença Crônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Injeções Intravenosas , Isoenzimas/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II , Quinazolinas/química , Quinazolinas/farmacologia , Ratos , Compostos de Espiro/síntese química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade
12.
J Med Chem ; 47(12): 3320-3, 2004 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15163211

RESUMO

4-Methylaminopyridine (4-MAP) (5) is a potent but nonselective nitric oxide synthase (NOS) inhibitor. While simple N-methylation in this series results in poor activity, more elaborate N-substitution such as with 4-piperidine carbamate or amide results in potent and selective inducible NOS inhibition. Evidently, a flipping of the pyridine ring between these new inhibitors allows the piperidine to interact with different residues and confer excellent selectivity.


Assuntos
Aminopiridinas/síntese química , Óxido Nítrico Sintase/antagonistas & inibidores , Aminopiridinas/química , Animais , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase Tipo II
13.
Br J Pharmacol ; 158(1): 169-79, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19558544

RESUMO

BACKGROUND AND PURPOSE: Beta(2)-adrenoceptor agonists (beta(2)-agonists) are important bronchodilators used in the treatment of asthma and chronic obstructive pulmonary disease. At the molecular level, beta(2)-adrenergic agonist stimulation induces desensitization of the beta(2)-adrenoceptor. In this study, we have examined the relationships between initial effect and subsequent reduction of responsiveness to restimulation for a panel of beta(2)-agonists in cellular and in vitro tissue models. EXPERIMENTAL APPROACH: Beta(2)-adrenoceptor-induced responses and subsequent loss of receptor responsiveness were studied in primary human airway smooth muscle cells and bronchial epithelial cells by measuring cAMP production. Receptor responsiveness was compared at equi-effective concentrations, either after continuous incubation for 24 h or after a 1 h pulse exposure followed by a 23 h washout. Key findings were confirmed in guinea pig tracheal preparations in vitro. KEY RESULTS: There were differences in the reduction of receptor responsiveness in human airway cells and in vitro guinea pig trachea by a panel of beta(2)-agonists. When restimulation occurred immediately after continuous incubation, loss of responsiveness correlated with initial effect for all agonists. After the 1 h pulse exposure, differences between agonists emerged, for example isoprenaline and formoterol induced the least reduction of responsiveness. High lipophilicity was, to some extent, predictive of loss of responsiveness, but other factors appeared to be involved in determining the relationships between effect and subsequent loss of responsiveness for individual agonists. CONCLUSIONS AND IMPLICATIONS: There were clear differences in the ability of different beta(2) agonists to induce loss of receptor responsiveness at equi-effective concentrations.


Assuntos
Agonistas Adrenérgicos/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Cobaias , Humanos , Masculino , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Mucosa Respiratória/citologia , Fatores de Tempo , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA