RESUMO
The regiochemical outcome of a cobalt(II) catalysed C-H activation reaction of aminoquinoline benzamides with unsymmetrical 1,3-diynes under relatively mild reaction conditions can be steered through the choice of diyne. The choice of diyne provides access to either 3- or 4-hydroxyalkyl isoquinolinones, paving the way for the synthesis of more highly elaborate isoquinolines.
RESUMO
AIMS: To utilize environmental surface sampling to evaluate areas of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contamination within workplaces to identify trends and improve local coronavirus disease 2019 (COVID-19) control measures. METHODS AND RESULTS: Surface sampling was undertaken at 12 workplaces that experienced a cluster of COVID-19 cases in the workforce between March 2021 and March 2022. A total of 7.4% (61/829) samples collected were positive for SARS-CoV-2 RNA by the quantitative PCR (qPCR) with only 1.8% (15/829) of samples identified with crossing threshold (Ct) values <35.0. No sample returned whole-genome sequence inferring RNA detected was degraded. CONCLUSIONS: Few workplace surface samples were positive for SARS-CoV-2 RNA and positive samples typically contained low levels of nucleic acid. Although these data may infer a low probability of fomite transmission within the workplace, Ct values may have been lower at the time of contamination. Workplace environmental sampling identified lapses in COVID-19 control measures within individual sites and showed trends throughout the pandemic.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , RNA Viral/genética , Local de Trabalho , Surtos de Doenças , Reino Unido/epidemiologiaRESUMO
BACKGROUND: A SARS-CoV-2 outbreak with an attack rate of 14.3% was reported at a plastics manufacturing plant in England. METHODS: Between 23rd March and 13th May 2021, the COVID-OUT team undertook a comprehensive outbreak investigation, including environmental assessment, surface sampling, molecular and serological testing, and detailed questionnaires, to identify potential SARS-CoV-2 transmission routes, and workplace- and worker-related risk factors. RESULTS: While ventilation, indicated using real-time CO2 proxy measures, was generally adequate on-site, the technical office with the highest localized attack rate (21.4%) frequently reached peaks in CO2 of 2100ppm. SARS-CoV-2 RNA was found in low levels (Ct ≥35) in surface samples collected across the site. High noise levels (79dB) were recorded in the main production area, and study participants reported having close work contacts (73.1%) and sharing tools (75.5%). Only 20.0% of participants reported using a surgical mask and/or FFP2/FFP3 respirator at least half the time and 71.0% expressed concerns regarding potential pay decreases and/or unemployment due to self-isolation or workplace closure. CONCLUSIONS: The findings reinforce the importance of enhanced infection control measures in manufacturing sectors, including improved ventilation with possible consideration of CO2 monitoring, utilising air cleaning interventions in enclosed environments, and provision of good-quality face masks (i.e., surgical masks or FFP2/FFP3 respirators) especially when social distancing cannot be maintained. Further research on the impacts of job security-related concerns is warranted.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Plásticos , RNA Viral , Dióxido de Carbono , Surtos de Doenças , Instalações Industriais e de ManufaturaRESUMO
Rapid and accurate serological analysis of SARS-CoV-2 antibodies is important for assessing immune protection from vaccination or infection of individuals and for projecting virus spread within a population. The quartz crystal microbalance (QCM) is a label-free flow-based sensor platform that offers an opportunity to detect the binding of a fluid-phase ligand to an immobilized target molecule in real time. A QCM-based assay was developed for the detection of SARS-CoV-2 antibody binding and evaluated for assay reproducibility. The assay was cross-compared to the Roche electrochemiluminescence assay (ECLIA) Elecsys® Anti-SARS-CoV-2 serology test kit and YHLO's chemiluminescence immunoassay (CLIA). The day-to-day reproducibility of the assay had a correlation of r2 = 0.99, p < 0.001. The assay linearity was r2 = 0.96, p < 0.001, for dilution in both serum and buffer. In the cross-comparison analysis of 119 human serum samples, 59 were positive in the Roche, 52 in the YHLO, and 48 in the QCM immunoassay. Despite differences in the detection method and antigen used for antibody capture, there was good coherence between the assays, 80-100% for positive and 96-100% for negative test results. In summation, the QCM-based SARS-CoV-2 IgG immunoassay showed high reproducibility and linearity, along with good coherence with the ELISA-based assays. Still, factors including antibody titer and antigen-binding affinity may differentially affect the various assays' responses.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Técnicas de Microbalança de Cristal de Quartzo , Reprodutibilidade dos Testes , Imunoensaio/métodos , Anticorpos Antivirais , Sensibilidade e EspecificidadeRESUMO
Oxytocin imprinted polymer nanoparticles were synthesized by glass bead supported solid phase synthesis, with NMR and molecular dynamics studies used to investigate monomer-template interactions. The nanoparticles were characterized by dynamic light scattering, scanning- and transmission electron microscopy and X-ray photoelectron spectroscopy. Investigation of nanoparticle-template recognition using quartz crystal microbalance-based studies revealed sub-nanomolar affinity, kd ≈ 0.3 ± 0.02 nM (standard error of the mean), comparable to that of commercial polyclonal antibodies, kd ≈ 0.02-0.2 nM.
Assuntos
Impressão Molecular , Anticorpos , Impressão Molecular/métodos , Nanogéis , Ocitocina , Polietilenoglicóis , Polietilenoimina , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo/métodosRESUMO
The design of artificial oxyanion receptors with switchable ion preference is a challenging goal in host-guest chemistry. We here report on molecularly imprinted polymers (MIPs) with an external phospho-sulpho switch driven by small molecule modifiers. The polymers were prepared by hydrogen bond-mediated imprinting of the mono- or dianions of phenyl phosphonic acid (PPA), phenyl sulfonic acid (PSA), and benzoic acid (BA) using N-3,5-bis-(trifluoromethyl)-phenyl-N-4-vinylphenyl urea (1) as the functional host monomer. The interaction mode between the functional monomer and the monoanions was elucidated by 1H NMR titrations and 1H-1H NMR NOESY supported by molecular dynamic simulation, which confirmed the presence of high-order complexes. PPA imprinted polymers bound PPA with an equilibrium constant Keq = 1.8 × 105 M-1 in acetonitrile (0.1% 1,2,2,6,6-pentamethylpiperidine) and inorganic HPO42- and SO42- with Keq = 2.9 × 103 M-1 and 4.5 × 103 M-1, respectively, in aqueous buffer. Moreover, the chromatographic retentivity of phosphonate versus sulfonate was shown to be completely switched on this polymer when changing from a basic to an acidic modifier. Mechanistic insights into this system were obtained from kinetic investigations and DSC-, MALDI-TOF-MS-, 1H NMR-studies of linear polymers prepared in the presence of template. The results suggest the formation of template induced 1-1 diad repeats in the polymer main chain shedding unique light on the relative contributions of configurational and conformational imprinting.
RESUMO
A family of non-ionic deep eutectic liquids has been developed based upon mixtures of solid N-alkyl derivatives of urea and acetamide that in some cases have melting points below room temperature. The eutectic behaviour and physical characteristics of a series of eleven eutectic mixtures are presented, along with a molecular dynamics study-supported hypothesis for the origin of the non-ideal mixing of these substances. Their use as solvents in applications ranging from natural product extraction to organic and polymer synthesis are demonstrated.
Assuntos
Acetamidas/química , Solventes/química , Temperatura , Ureia/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Solubilidade , Análise EspectralRESUMO
Materials that can mimic the molecular recognition-based functions found in biology are a significant goal for science and technology. Molecular imprinting is a technology that addresses this challenge by providing polymeric materials with antibody-like recognition characteristics. Recently, significant progress has been achieved in solving many of the practical problems traditionally associated with molecularly imprinted polymers (MIPs), such as difficulties with imprinting of proteins, poor compatibility with aqueous environments, template leakage, and the presence of heterogeneous populations of binding sites in the polymers that contribute to high levels of non-specific binding. This success is closely related to the technology-driven shift in MIP research from traditional bulk polymer formats into the nanomaterial domain. The aim of this article is to throw light on recent developments in this field and to present a critical discussion of the current state of molecular imprinting and its potential in real world applications.
Assuntos
Anticorpos , Impressão Molecular , Nanopartículas , Animais , Anticorpos/química , Anticorpos/uso terapêutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapêuticoRESUMO
We report an approach integrating the synthesis of protein-imprinted nanogels ("plastic antibodies") with a highly sensitive assay employing templates attached to magnetic carriers. The enzymes trypsin and pepsin were immobilized on amino-functionalized solgel-coated magnetic nanoparticles (magNPs). Lightly crosslinked fluorescently doped polyacrylamide nanogels were subsequently produced by high-dilution polymerization of monomers in the presence of the magNPs. The nanogels were characterised by a novel competitive fluorescence assay employing identical protein-conjugated nanoparticles as ligands to reversibly immobilize the corresponding nanogels. Both nanogels exhibited Kd <10â pM for their respective target protein and low cross-reactivity with five reference proteins. This agrees with affinities reported for solid-phase-synthesized nanogels prepared using low-surface-area glass-bead supports. This approach simplifies the development and production of plastic antibodies and offers direct access to a practical bioassay.
Assuntos
Resinas Acrílicas/química , Nanopartículas de Magnetita/química , Nanogéis/química , Pepsina A/química , Tripsina/química , Resinas Acrílicas/síntese química , Aminação , Animais , Bovinos , Enzimas Imobilizadas/química , Impressão Molecular , Polimerização , SuínosRESUMO
Halogenated arenes are important structural motifs commonly found in biologically active molecules and used for a variety of transformations in organic synthesis. Herein, we report the mono-protected l-amino acid (l-MPAA) accelerated iridium(III)-catalyzed halogenation of (hetero)anilides at room temperature. This reaction constitutes the first example of an iridium(III)/l-MPAA-catalyzed general halogenation of (hetero)arenes through C(sp2 )-H activation. Furthermore, we demonstrate the potential utility of our method through its use in the synthesis of a quinolone derivative.
Assuntos
Aminoácidos/química , Irídio/química , Carbono/química , Catálise , Halogenação , Hidrogênio/química , Teoria QuânticaRESUMO
All-component molecular dynamics studies were used to probe a library of oseltamivir molecularly imprinted polymer prepolymerization mixtures. Polymers included one of five functional monomers (acrylamide, hydroxyethylmethacrylate, methacrylic acid, 2-(triflouromethyl)acrylic acid, 4-vinylpyridine) and one of three porogens (acetonitrile, chloroform, methanol) combined with the crosslinking agent ethylene glycol dimethacrylate and initiator 2,2'-azobis(2-methylpropionitrile). Polymers were characterized by nitrogen gas sorption measurements and SEM, and affinity studies performed using radioligand binding in various media. In agreement with the predictions made from the simulations, polymers prepared in acetonitrile using either methacrylic or trifluoromethacrylic acid demonstrated the highest affinities for oseltamivir. Further, the ensemble of interactions observed in the methanol system provided an explanation for the morphology of polymers prepared in this solvent. The materials developed here offer potential for use in solid-phase extraction or for catalysis. The results illustrate the strength of this in silico strategy as a potential prognostic tool in molecularly imprinted polymer design.
Assuntos
Simulação por Computador , Simulação de Dinâmica Molecular , Impressão Molecular , Oseltamivir/química , Polímeros/síntese química , Conformação Molecular , Polímeros/químicaRESUMO
A series of 172 molecular structures that block the hERG K(+) channel were used to develop a classification model where, initially, eight types of PaDEL fingerprints were used for k-nearest neighbor model development. A consensus model constructed using Extended-CDK, PubChem and Substructure count fingerprint-based models was found to be a robust predictor of hERG activity. This consensus model demonstrated sensitivity and specificity values of 0.78 and 0.61 for the internal dataset compounds and 0.63 and 0.54 for the external (PubChem) dataset compounds, respectively. This model has identified the highest number of true positives (i.e. 140) from the PubChem dataset so far, as compared to other published models, and can potentially serve as a basis for the prediction of hERG active compounds. Validating this model against FDA-withdrawn substances indicated that it may even be useful for differentiating between mechanisms underlying QT prolongation.
Assuntos
Descoberta de Drogas/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Bases de Dados de Produtos Farmacêuticos , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , SoftwareRESUMO
Analytical methods founded upon whole cell-based assays are of importance in early stage drug development and in fundamental studies of biomolecular recognition. Here we have studied the binding of the monoclonal antibody trastuzumab to human epidermal growth factor receptor 2 (HER2) on human ovary adenocarcinoma epithelial cancer cells (SKOV3) using quartz crystal microbalance (QCM) technology. An optimized procedure for immobilizing the cells on the chip surface was established with respect to fixation procedure and seeding density. Trastuzumab binding to the cell decorated sensor surface was studied, revealing a mean dissociation constant, KD, value of 7 ± 1 nM (standard error of the mean). This study provides a new perspective on the affinity of the antibody-receptor complex presented a more natural context compared to purified receptors. These results demonstrate the potential for using whole cell-based QCM assay in drug development, the screening of HER2 selective antibody-based drug candidates, and for the study of biomolecular recognition. This real time, label free approach for studying interactions with target receptors present in their natural environment afforded sensitive and detailed kinetic information about the binding of the analyte to the target.
Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Técnicas Biossensoriais , Neoplasias Ovarianas/tratamento farmacológico , Técnicas de Microbalança de Cristal de Quartzo , Anticorpos Monoclonais Humanizados/química , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Humanos , Neoplasias Ovarianas/patologia , Quartzo/química , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , TrastuzumabRESUMO
A k-nearest neighbor (k-NN) classification model was constructed for 118 RDT NEDO (Repeated Dose Toxicity New Energy and industrial technology Development Organization; currently known as the Hazard Evaluation Support System (HESS)) database chemicals, employing two acute toxicity (LD50)-based classes as a response and using a series of eight PaDEL software-derived fingerprints as predictor variables. A model developed using Estate type fingerprints correctly predicted the LD50 classes for 70 of 94 training set chemicals and 19 of 24 test set chemicals. An individual category was formed for each of the chemicals by extracting its corresponding k-analogs that were identified by k-NN classification. These categories were used to perform the read-across study for prediction of the chronic toxicity, i.e., Lowest Observed Effect Levels (LOEL). We have successfully predicted the LOELs of 54 of 70 training set chemicals (77%) and 14 of 19 test set chemicals (74%) to within an order of magnitude from their experimental LOEL values. Given the success thus far, we conclude that if the k-NN model predicts LD50 classes correctly for a certain chemical, then the k-analogs of such a chemical can be successfully used for data gap filling for the LOEL. This model should support the in silico prediction of repeated dose toxicity.
Assuntos
Simulação por Computador , Relação Dose-Resposta a Droga , Modelos Biológicos , Software , Análise por Conglomerados , Descoberta de Drogas , Humanos , Dose Letal Mediana , Relação Quantitativa Estrutura-AtividadeRESUMO
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Assuntos
Impressão Molecular , Revisão da Pesquisa por Pares , Humanos , Relatório de PesquisaRESUMO
The interactions between each component of the pre-polymerisation mixtures used in the synthesis of molecularly imprinted polymers (MIP) specific for 1,2,3,4,5-pentachlorobenzene (1) and 1,2,3-trichlorobenzene (2) were examined in four molecular dynamics simulations. These simulations revealed that the relative frequency of functional monomer-template (FM-T) interactions was consistent with results obtained by the synthesis and evaluation of the actual MIPs. The higher frequency of 1 interaction with trimethylstyrene (TMS; 54.7%) than 1 interaction with pentafluorostyrene (PFS; 44.7%) correlated with a higher imprinting factor (IF) of 2.1 vs. 1.7 for each functional monomer respectively. The higher frequency of PFS interactions with 2 (29.6%) than TMS interactions with 2 (1.9%) also correlated well with the observed differences in IF (3.7) of 2 MIPs imprinted using PFS as the FM than the IF (2.8) of 2 MIPs imprinted using TMS as the FM. The TMS-1 interaction dominated the molecular simulation due to high interaction energies, but the weaker TMS-2 resulted in low interaction maintenance, and thus lower IF values. Examination of the other pre-polymerisation mixture components revealed that the low levels of TMS-2 interaction was, in part, due to interference caused by the cross linker (CL) ethyleneglycol dimethylacrylate (EGDMA) interactions with TMS. The main reason was, however, attributed to MeOH interactions with TMS in both a hydrogen bond and perpendicular configuration. This positioned a MeOH directly above the π-orbital of all TMS for an average of 63.8% of MD2 creating significant interference to π-π stacking interactions between 2 and TMS. These findings are consistent with the deviation from the 'normal' molecularly imprinted polymer synthesis ratio of 1 : 4 : 20 (T : FM : CL) of 20 : 1 : 29 and 15 : 6 : 29 observed with 2 and TMS and PFS respectively. Our molecular dynamics simulations correctly predicted the high level of interference from other MIP synthesis components. The effect on PFS-1 interaction by MeOH was significantly lower and thus this system was not adversely affected.
Assuntos
Clorobenzenos/química , Desenho de Fármacos , Poluentes Ambientais/química , Simulação de Dinâmica Molecular , Impressão Molecular , Bifenilos Policlorados/química , Polímeros/síntese química , Técnicas de Química Sintética , Conformação Molecular , Polímeros/químicaRESUMO
BACKGROUND: The interaction between biotin and avidin is utilized in a wide range of assay and diagnostic systems. A robust material capable of binding biotin should offer scope in the development of reusable assay materials and biosensor recognition elements. RESULTS: Biotin-selective thin (3-5 nm) films have been fabricated on hexadecanethiol self assembled monolayer (SAM) coated Au/quartz resonators. The films were prepared based upon a molecular imprinting strategy where N,N'-methylenebisacrylamide and 2-acrylamido-2-methylpropanesulfonic acid were copolymerized and grafted to the SAM-coated surface in the presence of biotin methyl ester using photoinitiation with physisorbed benzophenone. The biotinyl moiety selectivity of the resonators efficiently differentiated biotinylated peptidic or carbohydrate structures from their native counterparts. CONCLUSIONS: Molecularly imprinted ultra thin films can be used for the selective recognition of biotinylated structures in a quartz crystal microbalance sensing platform. These films are stable for periods of at least a month. This strategy should prove of interest for use in other sensing and assay systems.
Assuntos
Acrilamidas/química , Biotina/análise , Impressão Molecular/métodos , Nanoestruturas/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Benzofenonas/química , Técnicas Biossensoriais/métodos , Biotina/análogos & derivados , Biotina/química , Biotina/isolamento & purificação , Biotinilação , Carboidratos/química , Peptídeos/químicaRESUMO
In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.
Assuntos
Metacrilatos/química , Impressão Molecular/métodos , Polimerização , Análise de Componente PrincipalRESUMO
Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer-crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity.
Assuntos
Impressão Molecular , Polímeros/química , Espectroscopia de Ressonância Magnética , Metacrilatos/química , Simulação de Dinâmica MolecularRESUMO
A series of 436 Munro database chemicals were studied with respect to their corresponding experimental LD50 values to investigate the possibility of establishing a global QSAR model for acute toxicity. Dragon molecular descriptors were used for the QSAR model development and genetic algorithms were used to select descriptors better correlated with toxicity data. Toxic values were discretized in a qualitative class on the basis of the Globally Harmonized Scheme: the 436 chemicals were divided into 3 classes based on their experimental LD50 values: highly toxic, intermediate toxic and low to non-toxic. The k-nearest neighbor (k-NN) classification method was calibrated on 25 molecular descriptors and gave a non-error rate (NER) equal to 0.66 and 0.57 for internal and external prediction sets, respectively. Even if the classification performances are not optimal, the subsequent analysis of the selected descriptors and their relationship with toxicity levels constitute a step towards the development of a global QSAR model for acute toxicity.