Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biol Chem ; : 107504, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944123

RESUMO

Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.

2.
RNA ; 29(3): 273-281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596670

RESUMO

Z-RNA is a higher-energy, left-handed conformation of RNA, whose function has remained elusive. A growing body of work alludes to regulatory roles for Z-RNA in the immune response. Here, we review how Z-RNA features present in cellular RNAs-especially containing retroelements-could be recognized by a family of winged helix proteins, with an impact on host defense. We also discuss how mutations to specific Z-contacting amino acids disrupt their ability to stabilize Z-RNA, resulting in functional losses. We end by highlighting knowledge gaps in the field, which, if addressed, would significantly advance this active area of research.


Assuntos
DNA Forma Z , RNA , RNA/química , Adenosina Desaminase/metabolismo , Imunidade Inata/genética , Aminoácidos , Biologia
3.
Biochemistry ; 63(6): 777-787, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437710

RESUMO

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of viral and innate immune response proteins. While Z-form adoption is preferred by certain sequences, such as the commonly studied (CpG)n repeats, Zα has been reported to bind to a wide range of sequence contexts. Studying how Zα interacts with B-/A-form helices prior to their conversion to the Z-conformation is challenging as binding coincides with Z-form adoption. Here, we studied the binding of Zα fromHomo sapiens ADAR1 to a locked "A-type" version of the (CpG)3 construct (LNA (CpG)3) where the sugar pucker is locked into the C3'-endo/C2'-exo conformation, which prevents the duplex from adopting the alternating C2'/C3'-endo sugar puckers found in the Z-conformation. Using NMR and other biophysical techniques, we find that ZαADAR1 binds to the LNA (CpG)3 using a similar interface as for Z-form binding, with a dissociation constant (KD) of ∼4 µM. In contrast to Z-DNA/Z-RNA, where two ZαADAR1 bind to every 6 bp stretch, our data suggests that ZαADAR1 binds to multiple LNA molecules, indicating a completely different binding mode. Because ZαADAR1 binds relatively tightly to a non-Z-form model, its binding to B/A-form helices may need to be considered when experiments are carried out which attempt to identify the Z-form targets of Zα domains. The use of LNA constructs may be beneficial in experiments where negative controls for Z-form adoption are needed.


Assuntos
DNA Forma Z , Ácidos Nucleicos , Conformação de Ácido Nucleico , Sítios de Ligação , RNA , Açúcares , Adenosina Desaminase/metabolismo
4.
J Am Chem Soc ; 146(1): 677-694, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131335

RESUMO

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of innate immune response proteins. Zα domains stabilize this higher-energy conformation by making specific interactions with the unique geometry of Z-DNA/Z-RNA. However, the mechanism by which a right-handed helix contorts to become left-handed in the presence of proteins, including the intermediate steps involved, is poorly understood. Through a combination of nuclear magnetic resonance (NMR) and other biophysical measurements, we have determined that in the absence of Zα, under low salt conditions at room temperature, d(CpG) and r(CpG) constructs show no observable evidence of transient Z-conformations greater than 0.5% on either the intermediate or slow NMR time scales. At higher temperatures, we observed a transient unfolded intermediate. The ease of melting a nucleic acid duplex correlates with Z-form adoption rates in the presence of Zα. The largest contributing factor to the activation energies of Z-form adoption as calculated by Arrhenius plots is the ease of flipping the sugar pucker, as required for Z-DNA and Z-RNA. Together, these data validate the previously proposed "zipper model" for Z-form adoption in the presence of Zα. Overall, Z-conformations are more likely to be adopted by double-stranded DNA and RNA regions flanked by less stable regions and by RNAs experiencing torsional/mechanical stress.


Assuntos
DNA Forma Z , Ácidos Nucleicos , Conformação de Ácido Nucleico , Sítios de Ligação , DNA/química , RNA
5.
Molecules ; 28(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36677900

RESUMO

Despite structural differences between the right-handed conformations of A-RNA and B-DNA, both nucleic acids adopt very similar, left-handed Z-conformations. In contrast to their structural similarities and sequence preferences, RNA and DNA exhibit differences in their ability to adopt the Z-conformation regarding their hydration shells, the chemical modifications that promote the Z-conformation, and the structure of junctions connecting them to right-handed segments. In this review, we highlight the structural and chemical properties of both Z-DNA and Z-RNA and delve into the potential factors that contribute to both their similarities and differences. While Z-DNA has been extensively studied, there is a gap of knowledge when it comes to Z-RNA. Where such information is lacking, we try and extend the principles of Z-DNA stability and formation to Z-RNA, considering the inherent differences of the nucleic acids.


Assuntos
DNA Forma Z , Ácidos Nucleicos , RNA , Conformação de Ácido Nucleico , DNA/química
6.
PLoS Biol ; 17(1): e3000100, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615611

RESUMO

All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-binding protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo.


Assuntos
Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Sequência Conservada , Complexo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Fuso Acromático
7.
Nucleic Acids Res ; 48(11): 5839-5848, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427326

RESUMO

We provide an atomic-level description of the structure and dynamics of the UUCG RNA stem-loop by combining molecular dynamics simulations with experimental data. The integration of simulations with exact nuclear Overhauser enhancements data allowed us to characterize two distinct states of this molecule. The most stable conformation corresponds to the consensus three-dimensional structure. The second state is characterized by the absence of the peculiar non-Watson-Crick interactions in the loop region. By using machine learning techniques we identify a set of experimental measurements that are most sensitive to the presence of non-native states. We find that although our MD ensemble, as well as the consensus UUCG tetraloop structures, are in good agreement with experiments, there are remaining discrepancies. Together, our results show that (i) the MD simulation overstabilize a non-native loop conformation, (ii) eNOE data support its presence with a population of ≈10% and (iii) the structural interpretation of experimental data for dynamic RNAs is highly complex, even for a simple model system such as the UUCG tetraloop.


Assuntos
Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Movimento , Conformação de Ácido Nucleico , Sequência de Bases , Teorema de Bayes , Conjuntos de Dados como Assunto , Entropia , RNA/química
8.
J Am Chem Soc ; 143(39): 16055-16067, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579531

RESUMO

Proteins composed of multiple domains allow for structural heterogeneity and interdomain dynamics that may be vital for function. Intradomain structures and dynamics can influence interdomain conformations and vice versa. However, no established structure determination method is currently available that can probe the coupling of these motions. The protein Pin1 contains separate regulatory and catalytic domains that sample "extended" and "compact" states, and ligand binding changes this equilibrium. Ligand binding and interdomain distance have been shown to impact the activity of Pin1, suggesting interdomain allostery. In order to characterize the conformational equilibrium of Pin1, we describe a novel method to model the coupling between intra- and interdomain dynamics at atomic resolution using multistate ensembles. The method uses time-averaged nuclear magnetic resonance (NMR) restraints and double electron-electron resonance (DEER) data that resolve distance distributions. While the intradomain calculation is primarily driven by exact nuclear Overhauser enhancements (eNOEs), J couplings, and residual dipolar couplings (RDCs), the relative domain distribution is driven by paramagnetic relaxation enhancement (PREs), RDCs, interdomain NOEs, and DEER. Our data support a 70:30 population of the compact and extended states in apo Pin1. A multistate ensemble describes these conformations simultaneously, with distinct conformational differences located in the interdomain interface stabilizing the compact or extended states. We also describe correlated conformations between the catalytic site and interdomain interface that may explain allostery driven by interdomain contact.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Peptidilprolil Isomerase de Interação com NIMA/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Conformação Proteica
9.
J Biomol NMR ; 74(12): 717-739, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32880802

RESUMO

We have previously reported on the measurement of exact NOEs (eNOEs), which yield a wealth of additional information in comparison to conventional NOEs. We have used these eNOEs in a variety of applications, including calculating high-resolution structures of proteins and RNA molecules. The collection of eNOEs is challenging, however, due to the need to measure a NOESY buildup series consisting of typically four NOESY spectra with varying mixing times in a single measurement session. While the 2D version can be completed in a few days, a fully sampled 3D-NOESY buildup series can take 10 days or more to acquire. This can be both expensive as well as problematic in the case of samples that are not stable over such a long period of time. One potential method to significantly decrease the required measurement time of eNOEs is to use non-uniform sampling (NUS) to decrease the number of points measured in the indirect dimensions. The effect of NUS on the extremely tight distance restraints extracted from eNOEs may be very pronounced. Therefore, we investigated the fidelity of eNOEs measured from three test cases at decreasing NUS densities: the 18.4 kDa protein human Pin1, the 4.1 kDa WW domain of Pin1 (both in 3D), and a 4.6 kDa 14mer RNA UUCG tetraloop (2D). Our results show that NUS imparted negligible error on the eNOE distances derived from good quality data down to 10% sampling for all three cases, but there is a noticeable decrease in the eNOE yield that is dependent upon the underlying sparsity, and thus complexity, of the sample. For Pin1, this transition occurred at roughly 40% while for the WW domain and the UUCG tetraloop it occurred at lower NUS densities of 20% and 10%, respectively. We rationalized these numbers through reconstruction simulations under various conditions. The extent of this loss depends upon the number of scans taken as well as the number of peaks to be reconstructed. Based on these findings, we have created guidelines for choosing an optimal NUS density depending on the number of peaks needed to be reconstructed in the densest region of a 2D or 3D NOESY spectrum.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Simulação por Computador , Humanos , Cinética , Peptidilprolil Isomerase de Interação com NIMA/química , Domínios Proteicos , Fatores de Tempo
10.
J Biomol NMR ; 72(1-2): 39-54, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30121872

RESUMO

We investigated correlated µs-ms time scale motions of neighboring 13C'-15N and 13Cα-13Cß nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100-400 s-1 range) for the 13C'-15N pairs and into the slow to intermediate regime for the 13Cα-13Cß pairs (about 150 s-1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα-13Cß pairs.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , Técnicas de Química Analítica , Deutério , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio
11.
Chembiochem ; 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29883016

RESUMO

Distance-dependent nuclear Overhauser enhancements (NOEs) are one of the most popular and important experimental restraints for calculating NMR structures. Despite this, they are mostly employed as semiquantitative upper distance bounds, and this discards the wealth of information that is encoded in the cross-relaxation rate constant. Information that is lost includes exact distances between protons and dynamics that occur on the sub-millisecond timescale. Our recently introduced exact measurement of the NOE (eNOE) requires little additional experimental effort relative to other NMR observables. So far, we have used eNOEs to calculate multistate ensembles of proteins up to approximately 150 residues. Here, we briefly revisit eNOE methodology and present two new directions for the use of eNOEs: applications to large proteins and RNA.

12.
Molecules ; 22(7)2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28708092

RESUMO

Although often depicted as rigid structures, proteins are highly dynamic systems, whose motions are essential to their functions. Despite this, it is difficult to investigate protein dynamics due to the rapid timescale at which they sample their conformational space, leading most NMR-determined structures to represent only an averaged snapshot of the dynamic picture. While NMR relaxation measurements can help to determine local dynamics, it is difficult to detect translational or concerted motion, and only recently have significant advances been made to make it possible to acquire a more holistic representation of the dynamics and structural landscapes of proteins. Here, we briefly revisit our most recent progress in the theory and use of exact nuclear Overhauser enhancements (eNOEs) for the calculation of structural ensembles that describe their conformational space. New developments are primarily targeted at increasing the number and improving the quality of extracted eNOE distance restraints, such that the multi-state structure calculation can be applied to proteins of higher molecular weights. We then review the implications of the exact NOE to the protein dynamics and function of cyclophilin A and the WW domain of Pin1, and finally discuss our current research and future directions.


Assuntos
Ciclofilina A/química , Peptidilprolil Isomerase de Interação com NIMA/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sequência de Aminoácidos , Humanos , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Movimento (Física) , Conformação Proteica , Relação Estrutura-Atividade
13.
Magnetochemistry ; 9(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36776538

RESUMO

Protein methyl groups can participate in multiple motional modes on different time scales. Sub-nanosecond to nano-second time scale motions of methyl axes are particularly challenging to detect for small proteins in solutions. In this work we employ NMR relaxation interference between the methyl H-H/H-C dipole-dipole interactions [Sun&Tugarinov, J. Magn. Reason. 2012] to characterize methyl axes motions as a function of temperature in a small model protein villin headpiece subdomain (HP36), in which all non-exchangeable protons are deuterated with the exception of methyl groups of leucine and valine residues. The data points to the existence of slow motional modes of methyl axes on sub-nanosecond to nanosecond time scales. Further, at high temperatures for which the overall tumbling of the protein is on the order of 2 ns, we observe a coupling between the slow internal motion and the overall molecular tumbling, based on the anomalous order parameters and their temperature-dependent trends. The addition of 28%(w/w) glycerol-d8 increases the viscosity of the solvent and separates the timescales of internal and overall tumbling, thus permitting for another view of the necessity of the coupling assumption for these sites at high temperatures.

14.
Methods Mol Biol ; 2651: 251-275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892773

RESUMO

While DNA and RNA helices often adopt the canonical B- or A-conformation, the fluid conformational landscape of nucleic acids allows for many higher energy states to be sampled. One such state is the Z-conformation of nucleic acids, which is unique in that it is left-handed and has a "zigzag" backbone. The Z-conformation is recognized and stabilized by Z-DNA/RNA binding domains called Zα domains. We recently demonstrated that a wide range of RNAs can adopt partial Z-conformations termed "A-Z junctions" upon binding to Zα and that the formation of such conformations may be dependent upon both sequence and context. In this chapter, we present general protocols for characterizing the binding of Zα domains to A-Z junction-forming RNAs for the purpose of determining the affinity and stoichiometry of interactions as well as the extent and location of Z-RNA formation.


Assuntos
DNA Forma Z , Conformação de Ácido Nucleico , DNA/química , RNA , Estrutura Secundária de Proteína
15.
J Mol Biol ; 435(8): 168040, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889460

RESUMO

The Zα domain of ADARp150 is critical for proper Z-RNA substrate binding and is a key factor in the type-I interferon response pathway. Two point-mutations in this domain (N173S and P193A), which cause neurodegenerative disorders, are linked to decreased A-to-I editing in disease models. To understand this phenomenon at the molecular level, we biophysically and structurally characterized these two mutated domains, revealing that they bind Z-RNA with a decreased affinity. Less efficient binding to Z-RNA can be explained by structural changes in beta-wing, part of the Z-RNA-protein interface, and alteration of conformational dynamics of the proteins.


Assuntos
Adenosina Desaminase , Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Doenças Autoimunes do Sistema Nervoso/enzimologia , Doenças Autoimunes do Sistema Nervoso/genética , Sítios de Ligação , Malformações do Sistema Nervoso/enzimologia , Malformações do Sistema Nervoso/genética , RNA/química , Domínios Proteicos/genética , Mutação Puntual , Conformação de Ácido Nucleico
16.
Magn Reson Lett ; 2(2): 61-68, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35734611

RESUMO

Residual dipolar couplings (RDCs) are powerful nuclear magnetic resonance (NMR) probes for the structure calculation of biomacromolecules. Typically, an alignment tensor that defines the orientation of the entire molecule relative to the magnetic field is determined either before refinement of individual bond vectors or simultaneously with this refinement. For single-domain proteins this approach works well since all bond vectors can be described within the same coordinate frame, which is given by the alignment tensor. However, novel approaches are sought after for systems where no universal alignment tensor can be used. Here, we present an approach that can be applied to two-domain proteins that enables the calculation of multiple states within each domain as well as with respect to the relative positions of the two domains.

17.
Biomol NMR Assign ; 15(2): 273-279, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33742389

RESUMO

Adenosine-to-inosine (A-to-I) editing of a subset of RNAs in a eukaryotic cell is required in order to avoid triggering the innate immune system. Editing is carried out by ADAR1, which exists as short (p110) and long (p150) isoforms. ADAR1p150 is mostly cytoplasmic, possesses a Z-RNA binding domain (Zα), and is only expressed during the innate immune response. A structurally homologous domain to Zα, the Zß domain, is separated by a long linker from Zα on the N-terminus of ADAR1 but its function remains unknown. Zß does not bind to RNA in isolation, yet the binding kinetics of the segment encompassing Zα, Zß and the 95-residue linker between the two domains (Zα-Zß) are markedly different compared to Zα alone. Here we present the solution NMR backbone assignment of Zα-Zß from H. Sapiens ADAR1. The predicted secondary structure of Zα-Zß based on chemical shifts is in agreement with previously determined structures of Zα and Zß in isolation, and indicates that the linker is intrinsically disordered. Comparison of the chemical shifts between the individual Zα and Zß domains to the full Zα-Zß construct suggests that Zß may interact with the linker, the function of which is currently unknown.


Assuntos
Ressonância Magnética Nuclear Biomolecular
18.
Nat Commun ; 12(1): 793, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542240

RESUMO

Adenosine-to-inosine (A-to-I) editing of eukaryotic cellular RNAs is essential for protection against auto-immune disorders. Editing is carried out by ADAR1, whose innate immune response-specific cytoplasmic isoform possesses a Z-DNA binding domain (Zα) of unknown function. Zα also binds to CpG repeats in RNA, which are a hallmark of Z-RNA formation. Unexpectedly, Zα has been predicted - and in some cases even shown - to bind to specific regions within mRNA and rRNA devoid of such repeats. Here, we use NMR, circular dichroism, and other biophysical approaches to demonstrate and characterize the binding of Zα to mRNA and rRNA fragments. Our results reveal a broad range of RNA sequences that bind to Zα and adopt Z-RNA conformations. Binding is accompanied by destabilization of neighboring A-form regions which is similar in character to what has been observed for B-Z-DNA junctions. The binding of Zα to non-CpG sequences is specific, cooperative and occurs with an affinity in the low micromolar range. This work allows us to propose a model for how Zα could influence the RNA binding specificity of ADAR1.


Assuntos
Adenosina Desaminase/metabolismo , Elementos Alu/genética , Domínios Proteicos , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/isolamento & purificação , Adenosina Desaminase/ultraestrutura , Dicroísmo Circular , Imunidade Inata , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Motivo de Reconhecimento de RNA , RNA Ribossômico/genética , RNA Ribossômico/imunologia , RNA Ribossômico/ultraestrutura , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
19.
J Mol Biol ; 433(4): 166812, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33450249

RESUMO

Spindly is a dynein adaptor involved in chromosomal segregation during cell division. While Spindly's N-terminal domain binds to the microtubule motor dynein and its activator dynactin, the C-terminal domain (Spindly-C) binds its cargo, the ROD/ZW10/ZWILCH (RZZ) complex in the outermost layer of the kinetochore. In humans, Spindly-C binds to ROD, while in C. elegans Spindly-C binds to both Zwilch (ZWL-1) and ROD-1. Here, we employed various biophysical techniques to characterize the structure, dynamics and interaction sites of C. elegans Spindly-C. We found that despite the overall disorder, there are two regions with variable α-helical propensity. One of these regions is located in the C-terminal half and is compact; the second is sparsely populated in the N-terminal half. The interactions with both ROD-1 and ZWL-1 are mostly mediated by the same two sequentially remote disordered segments of Spindly-C, which are C-terminally adjacent to the helical regions. The findings suggest that the Spindly-C binding sites on ROD-1 in the ROD-1/ZWL-1 complex context are either shielded or conformationally weakened by the presence of ZWL-1 such that only ZWL-1 directly interacts with Spindly-C in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/química , Dineínas/química , Cinetocoros/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica , Fuso Acromático/metabolismo , Relação Estrutura-Atividade
20.
J Mol Biol ; 433(15): 167108, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34161778

RESUMO

The nucleocapsid protein is one of four structural proteins encoded by SARS-CoV-2 and plays a central role in packaging viral RNA and manipulating the host cell machinery, yet its dynamic behavior and promiscuity in nucleotide binding has made standard structural methods to address its atomic-resolution details difficult. To begin addressing the SARS-CoV-2 nucleocapsid protein interactions with both RNA and the host cell along with its dynamic behavior, we have specifically focused on the folded N-terminal domain (NTD) and its flanking regions using nuclear magnetic resonance solution studies. Studies performed here reveal a large repertoire of interactions, which includes a temperature-dependent self-association mediated by the disordered flanking regions that also serve as binding sites for host cell cyclophilin-A while nucleotide binding is largely mediated by the central NTD core. NMR studies that include relaxation experiments have revealed the complicated dynamic nature of this viral protein. Specifically, while much of the N-terminal core domain exhibits micro-millisecond motions, a central ß-hairpin shows elevated inherent flexibility on the pico-nanosecond timescale and the serine/arginine-rich region of residues 176-209 undergoes multiple exchange phenomena. Collectively, these studies have begun to reveal the complexities of the nucleocapsid protein dynamics and its preferred interaction sites with its biological targets.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Mutação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , Evolução Molecular , Células HEK293 , Humanos , Evasão da Resposta Imune , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA