RESUMO
The field of single-cell RNA sequencing (scRNA-seq) has advanced rapidly in the past decade, generating significant amounts of valuable data for researchers to study complex tumor profiles. This data is crucial for gaining innovative insights into cancer biology. CancerSCEM (https://ngdc.cncb.ac.cn/cancerscem) is a public resource that integrates, analyzes and visualizes scRNA-seq data related to cancer, and it provides invaluable support to numerous cancer-related studies. With CancerSCEM 2.0, scRNA-seq data have increased from 208 to 1466 datasets, covering tumor, matching-normal and peripheral blood samples across 127 research projects and 74 cancer types. The new version of this resource enhances transcriptome analysis by adding copy number variation evaluation, transcription factor enrichment, pseudotime trajectory construction, and diverse biological feature scoring. It also introduces a new cancer metabolic map at the single-cell level, providing an intuitive understanding of metabolic regulation across different cancer types. CancerSCEM 2.0 has a more interactive analysis platform, including four modules and 14 analytical functions, allowing researchers to perform cancer scRNA-seq data analyses in various dimensions. These enhancements are expected to expand the usability of CancerSCEM 2.0 to a broader range of cancer research and clinical applications, potentially revolutionizing our understanding of cancer mechanisms and treatments.
RESUMO
Phosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage. The phenotypic response patterns to low-Pi stress at different stages were independent. Chlorophyll content was found to be a potential indicator for screening low-Pi-tolerant materials in the field. A total of 2900 and 1446 significantly associated genes at the maturity and seedling stages were identified, respectively. Among these genes, 972 were uniquely associated with maturity traits, while 330 were specifically detected at the seedling stage under low-Pi stress. Moreover, 768 and 733 genes were specifically associated with index values (low-Pi trait/normal-Pi trait) at maturity and seedling stage, respectively. Genetic network diagrams showed that the low-Pi response gene Zm00001d022226 was specifically associated with multiple primary P-related traits under low-Pi conditions. A total of 963 out of 2966 genes specifically associated with traits under low-Pi conditions or index values were found to be induced by low-Pi stress. Notably, ZmSPX4.1 and ZmSPX2 were sharply up-regulated in response to low-Pi stress across different lines or tissues. These findings advance our understanding of maize's response to low-Pi stress at different developmental stages, shedding light on the genes and pathways implicated in this response.
Assuntos
Fenótipo , Fósforo , Plântula , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fósforo/metabolismo , Genes de Plantas , Estudo de Associação Genômica Ampla , Clorofila/metabolismo , Locos de Características Quantitativas , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.
Assuntos
Fósforo , Amido , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Amido/metabolismo , Fósforo/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , FenótipoRESUMO
The PHOSPHATE STARVATION RESPONSE REGULATOR (PHR) plays a crucial regulatory role in plants during the process of responding to phosphate starvation. In this study, we combined reverse genetics and biotechnology to investigate the function of ZmPHR1 and ZmPHR2, including proteins containing the Myb_DNA_banding and Myb_CC-LHEQLE structural domains, in maize seedlings. Phylogenetic analysis revealed that ZmPHR1 and ZmPHR2 have high homology with AtPHR1 and OsPHR2, and share the characteristic features of nuclear localisation and transcriptional self-activation. Real-time quantitative PCR analysis showed that low phosphate (Pi) stress significantly induced the expression of ZmPHR1 and ZmPHR2 in maize seedling stage, and candidate gene association analysis further revealed the close association of these two genes with root traits under Pi stress conditions. Transgenic plants overexpressing ZmPHR1 and ZmPHR2 in Arabidopsis show a significant increase in lateral root number, fresh weight and total phosphorus accumulation under low-Pi stress. Besides, CHIP-PCR experiments identified target genes involved in hormone regulation, metal ion transport and homeostasis, phosphatase encoding, and photosynthesis, providing new insights into the biological functions of ZmPHR1 and ZmPHR2. Furthermore, our study showed that ZmPHR1 interacts with six SPX domain-only proteins (ZmSPXs) in maize, while ZmPHR2 interacts with five of these proteins. ZmPHR1 and ZmPHR2 expression was repressed in low Pi conditions, but was up-regulated in ZmSPX1 knockout material, according to our study of transgenic seedlings overexpressing ZmSPX1 in maize. We identified downstream target genes involved in the phosphorus signaling pathway, which are mainly involved in plant-pathogen interactions, ascorbic acid and arabinose metabolism, and ABC transporter proteins, by RNA-seq analysis of transgenic seedlings grown under low Pi stress for 7 days. Collectively, these results provide important clues to elucidate the role and functional significance of ZmPHR1 and ZmPHR2 under low Pi stress and also provide insights into understand the molecular mechanism of phosphorus homeostasis in maize. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01508-2.
RESUMO
The oscillator strengths and cross sections of the valence-shell excitations of HBr were determined by fast electron scattering with an incident electron energy of 1500 eV and an energy resolution of 80 meV. The momentum transfer dependence behaviors of the generalized oscillator strengths have been used to elucidate the transition characteristics. The present results show that the strong spin-orbital interaction results in the observation of some triplet states in the (Λ, S) coupling and the constant generalized oscillator strength ratios for the pair states with the same electronic configuration and quantum number Ω, and the quantitative spin-orbit coupling coefficients of b3Π1(v = 0) and C1Π(v = 0) are determined. The optical oscillator strengths of the valence-shell excitations were obtained by extrapolating the generalized oscillator strengths to the limit of zero squared momentum transfer. The present optical oscillator strengths give an independent cross-check of the previous experimental and theoretical results, and the comparison shows that the line-saturation effect is more severe for the high Rydberg states with large intensities and narrow natural widths. The integral cross sections of the valence-shell excitations of HBr were obtained from the excitation threshold to 5000 eV by the BE-scaling method. The present oscillator strengths and cross sections supplement the fundamental molecular database of HBr and can be used for modeling in the semiconductor industry, astrophysics, and atmospheric chemistry.
RESUMO
The regioselective synthetic approach to higher alkenes from lower alkenes by using sulfoxides as alkyl or aryl reagents in the Fe3+/H2O2 system has been developed. This reaction realized direct alkylation or arylation of alkenes. In this reaction, sulfoxides afforded one Csp3 or Csp2 atom to the CâC bond of alkenes; one new Csp2-Csp3 bond or Csp2-Csp2 bond was formed. Nearly 40 products including di-, tri-, and tetra-substituted products were regioselectively synthesized. Both aliphatic and aromatic alkenes could participate in this reaction. Moreover, not only dimethyl sulfoxide but also three other sulfoxides can be applied to this reaction, including diethyl, dibenzyl, and diphenyl sulfoxide. The mechanism studies showed that this reaction may experience a coupling process via radical addition-elimination and the Fe3+/H2O2 system made the sulfoxides offered one alkyl or aryl radical to the CâC bond of alkenes.
RESUMO
The spindle assembly checkpoint (SAC) is a highly conserved monitoring system that ensures a fidelity of chromosome segregation during mitosis. Bub3, a mitotic Checkpoint Protein, is a member of the Bub protein family, and an important factor in the SAC. Abnormal expression of Bub3 results in mitotic defects, defective spindle gate function, chromosomal instability and the development of aneuploidy cells. Aneuploidy is a state of abnormal karyotype that has long been considered as a marker of tumorigenesis. Karyotypic heterogeneity in tumor cells, known as "chromosomal instability" (CIN), can be used to distinguish cancerous cells from their normal tissue counterpart. In this review, we summarize the expression and clinical significance of Bub3 in a variety of tumors and suggest that it has potential in the treatment of cancer.
Assuntos
Proteínas de Ciclo Celular , Neoplasias , Proteínas de Ligação a Poli-ADP-Ribose , Aneuploidia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Instabilidade Cromossômica , Humanos , Mitose , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fuso Acromático/metabolismoRESUMO
A joint experimental and theoretical investigation of the valence shell excitations of carbon tetrachloride has been performed by fast electron scattering and time dependent density functional theory calculations. At a collision energy of 1.5 keV and an energy resolution of about 70 meV, the dipole-forbidden transition of a1σ* â 2t1 has been clearly observed at large momentum transfers, and its excitation energy of 6.15 eV and line width of 0.72 eV have been determined. Two new features are also recognized at 9.97 and 10.26 eV. The generalized oscillator strengths of the excited states at 5-11.3 eV have been determined from the measured spectra. The calculated generalized oscillator strength of the a1σ* â 2t1 transition with the vibronic effect shows better agreement with the experiment, and the vibronic effect also accounts for its nonzero intensity at zero squared momentum transfer. The optical oscillator strengths of the valence shell excitations have also been obtained by extrapolating the generalized oscillator strengths to the limit of zero squared momentum transfer. The integral cross sections have been systematically determined from the threshold to 5000 eV by means of the BE-scaling method. The present oscillator strengths and cross sections provide the fundamental data of carbon tetrachloride and have important applications in photochemical modeling for atmospheric physics.
RESUMO
Pepper is an important and widely cultivated economic vegetable in the world (Yin et al., 2021). In June 2021, approximately 25% to 33.3% of the pepper plants had rot disease symptoms in Zhuanghang Comprehensive Experimental Base (30.894829 °N, 121.391374 °E), Fengxian district, Shanghai city, China. Water-soaked spots appeared on fruits that increased in size and leading to smelly fruit decay. To isolate the pathogen, three pepper samples with severe symptoms were collected. The samples were surface disinfected with 70% ethanol for 30 sec, 10% chlorine bleach for 10 min, rinsing with sterile water for three times and the rot tissues were cut and dried on sterile filter paper. The dried paper was later placed on potato dextrose agar (PDA) medium and incubated at 28°C (Tang et al., 2021). After 2-3 days, four types of colonies with different colony appearances were observed, in which only one can induce fruit rot phenotype (data not shown). Four isolates were cultured for molecular identification in each type. ITS1/ITS4, T1/ßt-2b and EF1-526F/EF1-1567R primers were used to amplify the internal transcribed spacer region (ITS), the beta-tubulin (TUB2) and the translation elongation factor I alpha (EF1-α) genes, respectively (Chen et al., 2018) and corresponding sequences from the isolates were analyzed with BLAST. Sequences of the isolate which can induce pepper decay were submitted to GenBank under the accession numbers of OM663701 (ITS), OM720127 (TUB2) and OM720128 (EF1-α). The results showed that the pathogen had 99% sequence homology to most strains of Botryosphaeria dothidea (B. dothidea) and displayed the highest sequence similarity to strain LBSX-1 (ITS: KF55123), strain JGT01 (TUB2: MW202404) and isolate CZA (EF1-α: MN025271). Based on molecular characterization, the isolate was identified as B. dothidea isolate SH01. A phylogenetic tree was constructed using Maximum Parsimony (MP) methods by MEGA7, and showed that SH01 was closely related to isolate CMW9075. To confirm the pathogenicity, five healthy pepper fruits were surface sterilized, 500µl of conidial suspension (1×103 conidia/ml) were injected into pepper (sterilized distilled water as control). Six days post inoculation (dpi), fruit rot symptoms appeared and the pepper decayed at 12 dpi. Four days post inoculation with mycelium plugs (from a 4-day-old culture on PDA, PDA plugs as control), hyphae were observed in the inoculation site and B. dothidea was re-isolated from the symptomatic areas, thus fulfilling Koch's postulates (Back et al., 2021, Chen et al., 2020). The pepper rotted severely at 7 dpi. The colonies of SH01 were pale to white and gradually turned into gray in 4-6 days. Conidia of the pathogen were unicellular, aseptate, hyaline and fusiform to fusoid, with dimensions of 19.7-23.5 µm × 3.8-5.2 µm (average = 21.9 µm × 4.8 µm, n = 50). Hyphae were transparent, branched and composed of multiple cells. The characteristic was consistent with the descriptions of B. dothidea (Vasic et al., 2013). B. dothidea belongs to Botryosphaeriaceae, causing widespread diseases in many plant species, commonly associated with cankers and dieback of woody plants and economic crops, such as plumcot trees (Back et al., 2021), eucalyptus (Yu et al., 2009) and soybeans (Chen et al., 2020) in China and Korea. Our findings reported for the first time that B. dothidea (SH01) can induce the pepper rot disease and future work on its pathogenesis may provide strategies for disease control against this fungus.
RESUMO
A deficiency in the macronutrient phosphate (Pi) brings about various changes in plants at the morphological, physiological and molecular levels. However, the molecular mechanism for regulating Pi homeostasis in response to low-Pi remains poorly understood, particularly in maize (Zea mays L.), which is a staple crop and requires massive amounts of Pi. Therefore, in this study, we performed expression profiling of the shoots and roots of maize seedlings with Pi-tolerant genotype at both the transcriptomic and proteomic levels using RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ). We identified 1944 differentially expressed transcripts and 340 differentially expressed proteins under low-Pi conditions. Most of the differentially expressed genes were clustered as regulators, such as transcription factors involved in the Pi signaling pathway at the transcript level. However, the more functional and metabolism-related genes showed expression changes at the protein level. Moreover, under low-Pi conditions, Pi transporters and phosphatases were specifically induced in the roots at both the transcript and protein levels, and increased amounts of mRNA and protein of two purple acid phosphatases (PAPs) and one UDP-sulfoquinovose synthase (SQD) were specifically detected in the roots. The new insights provided by this study will help to improve the P-utilization efficiency of maize.
Assuntos
Fosfatos/deficiência , Proteoma , Transdução de Sinais , Transcriptoma , Zea mays/metabolismo , Perfilação da Expressão Gênica , Genótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteômica , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico , Zea mays/genéticaRESUMO
Glioblastoma (GBM) is the most aggressive tumors of the central nervous system. Here, we report that SH3 binding glutamic acid-rich protein like 3 (SH3BGRL3) was extremely highly expressed in GBM and glioma stem cells. SH3BGRL3 high expression associates with worse survival of GBM patients. Functionally, Targeting SH3BGRL3 obviously impairs GSCs self-renewal in vitro. Most importantly, we first report that SH3BGRL3 is a direct transcriptional target gene of signal transducer and activator of transcription 3 (STAT3) and thereby activating STAT3 signaling in turn. Additionally, forced expression of the constitutively activated STAT3 (STAT3-C) rescued GSCs self-renewal inhibited by SH3BGRL3 silencing. Collectively, we first identified a critical positive feedback loop between SH3BGRL3 and STAT3, which facilitates the tumorigenic potential of GBM.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células , Autorrenovação Celular , Progressão da Doença , Glioblastoma/diagnóstico , Humanos , PrognósticoRESUMO
Glioblastoma is the most common and severe primary intrinsic tumor of the central nervous system. Glioblastoma harbors glioma stem cells (GSCs) as it not only possesses self-renewal and differentiation properties but also accounts for significant chemotherapy resistance and recurrence. Thus, targeting GSCs may be essential in overcoming the resistance and recurrence thereby improving GBM treatment. However, the underlying mechanism to sustain GSCs remains largely unknown. Here, we report that SH3 domain binding glutamate-rich protein like 2 (SH3BGRL2) is weakly expressed in glioblastoma multiforme (GBM) and isocitrate dehydrogenase1 (IDH1) wildtype GBM and correlated with glioma patients' poor prognosis. Moreover, ectopic expression of SH3BGRL2 significantly inhibited GBM cell growth, migration, and GSCs self-renewal in vitro as well as tumor growth in vivo. Additionally, we found that SH3BGRL2 suppressed SOX2 and CD133 expression, which are key regulators involved in GSCs self-renewal. Collectively, our findings shed additional light on SH3BGRL2 has potential to serve as a biomarker and a potent therapeutic target for patients with glioma.
Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Transporte/biossíntese , Genes Supressores de Tumor , Glioblastoma/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Autorrenovação Celular , Biologia Computacional/métodos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estadiamento de Neoplasias , Taxa de Sobrevida , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Glioblastoma (GBM) is the most severe malignant tumors of the central nervous system. Glioblastoma stem cells (GSCs) are considered to account for tumor initiation, therapeutic resistance, and tumor relapse. Yet the underlying mechanisms of GSC stemness maintenance remain largely unknown. Abnormal activation of STAT3 signaling is required for GBM tumorigenesis and GSC self-renewal. In this study, we provide evidence that SH3GL3 was weakly expressed in GBM and its high expression correlated with a favorable prognosis for GBM patients. Ectopic of SH3GL3 expression considerably inhibits GBM cell malignant behaviors, including GBM cell proliferation, migration as well as GSCs self-renewal ability. Mechanistically, we first found that SH3GL3 interacts with STAT3, which thereby inhibiting STAT3 nuclear localization. Overexpression of constitutively activated (STAT3-C) restored the growth, migration and self-renewal ability impaired by overexpression of SH3GL3. Together, our work shed insight on a critical regulatory mechanism mediated by SH3GL3 to decrease the stem cell-like property and tumorigenic potential.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Glioblastoma/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Estadiamento de Neoplasias , Transdução de Sinais , Taxa de SobrevidaRESUMO
An unexpected annulation among 2-aminobenzyl alcohols, benzaldehydes, and DMSO to quinolines has been disclosed. For the reported annulation between 2-aminobenzyl alcohols and benzaldehydes, the change of the solvent from toluene to DMSO led to the change of the product from the diheteroatomic cyclic benzoxazines to monoheteroatomic cyclic quinolines. This annulation can be used to synthesize regioselectively different substituted quinolines by the choice of different 2-amino alcohols, aldehydes, and sulfoxides as substrates. Interestingly, introducing substituent groups to the α-position of sulfoxides resulted in the interchange of the positions between benzaldehydes and sulfoxides in the product quinolines. On the basis of the control experiments and literatures, a plausible mechanism for this annulation was proposed.
Assuntos
Benzaldeídos , Quinolinas , Aldeídos , Dimetil Sulfóxido , SolventesRESUMO
Two CâC bond participation in annulation to pyridines using N,N-dimethylformamide (DMF) as the N1 and C4 synthons has been carried out. In this reaction, DMF contributed one N atom and one C atom to two disconnected positions of pyridine ring, with no need for an additional nitrogen source. Two CâC bonds in two molecules of substituted styrenes offered four carbon atoms in the presence of iodine and persulfate. With the optimized conditions in hand, both symmetric and unsymmetric diaryl-substituted pyridines were obtained in useful yields. On the basis of relevant literature and a series of control experimental results, a possible mechanism was proposed in this work, which may demonstrate how DMF provides both N1 and C4 sources.
RESUMO
AIMS AND OBJECTIVES: This study aimed to determine the knowledge and current practices of ICU nurses regarding aerosol therapy for patients with invasive mechanical ventilation in China. BACKGROUND: Aerosol therapy is a routine operation for intensive care unit (ICU) nurses; however, evidence of the knowledge and current practices of ICU nurses regarding aerosol therapy for patients with invasive mechanical ventilation is insufficient in China. DESIGN: A total of 433 hospitals in 92 cities (including 31 capital cities) in 31 provinces in China participated in the study. METHODS: A questionnaire was used to investigate the knowledge and current practices of ICU nurses regarding aerosol therapy for patients treated with invasive mechanical ventilation, including 42 questions covering five aspects: sociodemographic information, aerosolisation devices, atomised drugs, atomisation operation and atomisation-related knowledge. Descriptive analyses of the distribution of the sample are reported as percentages and medians. Univariate and multivariate analysis was used to detect the factors of the interviewee's atomisation knowledge and practices scores. A STROBE checklist was used to guide the reporting of the research. RESULTS: Of the 1995 questionnaires that were returned, 1978 were analysed. Bronchodilators and glucocorticoids were the most frequently administered drugs. Seventy-four per cent of the total respondents reported placing a filter on the expiratory limb during aerosol therapy, and 47% of these reported that the filter was changed once a day. Only 13% of the respondents reported always turning the heating humidifier off during aerosol therapy, and 48% never did. Knowledge about the optimal droplet size or atomisation yield was poor. Work experience in the ICU and frequency of atomisation training were the independent influencing factors for atomisation knowledge and practice scores (F = 279.653, p < .001; F = 120.556, p < .001, respectively). CONCLUSIONS: The knowledge of ICU nurses about the optimal implementation of aerosol therapy is poor, and the current scientific knowledge about optimal implementation seemed to be applied infrequently. Atomisation-related training should be strengthened, especially for nurses with junior titles and with less work experience. RELEVANCE TO CLINICAL PRACTICE: Improving the level of ICU nurses' atomisation practice ability is helpful to ensure patient safety. In clinical work, atomisation expert consensus can be used to carry out relevant training and standardise atomisation operation.
Assuntos
Enfermeiras e Enfermeiros , Respiração Artificial , Aerossóis , Estudos Transversais , Humanos , Unidades de Terapia Intensiva , Inquéritos e QuestionáriosRESUMO
Inorganic phosphorus (Pi) is an essential element in numerous metabolic reactions and signaling pathways, but the molecular details of these pathways remain largely unknown. In this study, metabolite profiles of maize (Zea mays L.) leaves and roots were compared between six low-Pi-sensitive lines and six low-Pi-tolerant lines under Pi-sufficient and Pi-deficient conditions to identify pathways and genes associated with the low-Pi stress response. Results showed that under Pi deprivation the concentrations of nucleic acids, organic acids and sugars were increased, but that the concentrations of phosphorylated metabolites, certain amino acids, lipid metabolites and nitrogenous compounds were decreased. The levels of secondary metabolites involved in plant immune reactions, including benzoxazinoids and flavonoids, were significantly different in plants grown under Pi-deficient conditions. Among them, the 11 most stable metabolites showed significant differences under low- and normal-Pi conditions based on the coefficient of variation (CV). Isoleucine and alanine were the most stable metabolites for the identification of Pi-sensitive and Pi-resistant maize inbred lines. With the significant correlation between morphological traits and metabolites, five low-Pi-responding consensus genes associated with morphological traits and simultaneously involved in metabolic pathways were mined by combining metabolites profiles and genome-wide association study (GWAS). The consensus genes induced by Pi deficiency in maize seedlings were also validated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, these genes were further validated in a recombinant inbred line (RIL) population, in which the glucose-6-phosphate-1-epimerase encoding gene mediated yield and correlated traits to phosphorus availability. Together, our results provide a framework for understanding the metabolic processes underlying Pi-deficient responses and give multiple insights into improving the efficiency of Pi use in maize.
Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Zea mays/fisiologia , Metabolômica , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico , Zea mays/genéticaRESUMO
The aim of our study was to explore the roles of miR-671-5p in mediating biological processes of osteosarcoma (OS) cells and clinical implications. On the basis of the OS samples acquired from the GEO database, the expression difference and overall survival analyses of miR-671-5p and TUFT1 were determined. The expression of MiR-671-5p was verified using OS cell lines. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound-healing, and Transwell assays were respectively carried out to probe whether miR-671-5p regulated OS cell vitality, migration, and invasion. The expression of miR-671-5p was downregulated in OS tissues and cell lines. High expression of MiR-671-5p blocked OS cell growth, migration, and invasion. TUFT1 was predicted and validated as the target of miR-671-5p in OS cells using in silico analysis and luciferase reporter assays. Forced expression of TUFT1 reversed the suppressive influence of miR-671-5p on cell viability, migration, and invasion of OS cells. Moreover, the low expression of miR-671-5p and the high expression of TUFT1 led to poor prognosis. Taken together, targeting miR-671-5p/TUFT1 may be a promising strategy for treating OS.
Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Proteínas do Esmalte Dentário/metabolismo , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteínas do Esmalte Dentário/genética , Progressão da Doença , Humanos , MicroRNAs/genética , Osteossarcoma/patologia , Prognóstico , Taxa de Sobrevida , TransfecçãoRESUMO
BACKGROUND: Recurrent hematospermia accompanied by postejaculatory hematuria is a very rare phenomenon, has not been well understood in the clinical setting, and usually leads to misdiagnosis and mistreatment. The aim of this study was to summarize the clinical characteristics, etiologic diagnosis, and endoscopic treatment of hematospermia with postcoital hematuria. METHODS: We collected the clinical data from 39 patients of hematospermia with postcoital hematuria, who were admitted to our hospital from May 2014 to October 2019. The etiologic diagnostic process and endoscopic surgery were analyzed retrospectively, and we observed and evaluated the efficacy and any complications during follow-up. RESULTS: The average age of the 39 patients was 44.1 years (range, 18-61 years), and the disease history ranged from 1 month to 20 years, with a median duration of 24 months. All of the patients were observed by urethrocystoscopy, which showed 38 cases of posterior urethral hemangioma (PUH) or abnormal varicose vessels, and 1 case of anterior urethral hemangioma. Of these, 18 patients underwent transurethral resection of urethral hemangioma, and 21 patients underwent transurethral electrocauterization. Postoperative follow-up ranged from 1 to 56 months, with a median of 16 months. The symptoms disappeared in 37 patients and recurred in 2 patients two to 3 months after the operation. The two recurrent patients were treated again by transurethral electrocauterization, and their symptoms then disappeared. CONCLUSIONS: PUH is the most common cause of hematospermia with postejaculatory hematuria. Herein, we demonstrated that transurethral resection or electrocauterization provides a safe, effective, and minimally invasive method for the treatment of PUH.
Assuntos
Endoscopia , Hemangioma/cirurgia , Hemospermia/diagnóstico , Hemospermia/cirurgia , Neoplasias Uretrais/cirurgia , Adolescente , Adulto , Coito , Hemangioma/complicações , Hematúria/etiologia , Hemospermia/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Uretrais/complicações , Adulto JovemRESUMO
OBJECTIVE: We investigated the effects of mindfulness-based cognitive therapy on insomnia (MBCT-I) in breast cancer survivors. METHODS: In total, 136 participants were allocated randomly to a MBCT-I group or a waitlist control (WLC) group. Indicators of insomnia and mindfulness were evaluated using the Insomnia Severity Index, actigraphy and the Five Facet Mindfulness Questionnaire. Data were collected at baseline (T1), post-intervention (T2), 3-month follow-up (T3) and 6-month follow-up (T4) time points. RESULTS: Insomnia severity decreased significantly in the MBCT-I group, compared with the WLC group, at T2, T3 and T4 (all p < .001). We found that 59.6% of the MBCT-I group with moderate and severe insomnia improved to no insomnia and subclinical insomnia at T4 relative to T1, accounting for 7.9% and 55.3%, respectively. Compared with the WLC group, the MBCT-I group improved on actigraphy measures of sleep; they exhibited a pattern of decreased sleep onset latency and waking after sleep onset, as well as increased total sleep time and sleep efficiency. Mindfulness also increased more in the MBCT-I group than in the WLC group at T2, T3 and T4 (all p < .001). CONCLUSIONS: MBCT-I may be an efficacious non-pharmacologic intervention to improve sleep quality in breast cancer survivors.