Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Virol J ; 10: 63, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23442390

RESUMO

BACKGROUND: Subviral particles of hepatitis B virus (HBV) composed of L protein deletion variants with the 48 N-terminal amino acids of preS joined to the N-terminus of S protein (1-48preS/S) induced broadly neutralizing antibodies after immunization of mice with a Semliki Forest virus vector. A practical limitation for use as vaccine is the suboptimal secretion of such particles. The role of the N-terminal preS myristoylation in the cellular retention of full-length L protein is described controversially in the literature and the relation of these data to the truncated L protein was unknown. Thus, we studied the effect of preS myristoylation signal suppression on 1-48preS/S secretion efficiency, glycosylation and subcellular distribution. FINDINGS: The findings are that 1-48preS/S is secreted, and that removal of the N-terminal myristoylation signal in its G2A variant reduced secretion slightly, but significantly. The glycosylation pattern of 1-48preS/S was not affected by the removal of the myristoylation signal (G2A mutant) but was different than natural L protein, whereby N4 of the preS and N3 of the S domain were ectopically glycosylated. This suggested cotranslational translocation of 1-48preS in contrast to natural L protein. The 1-48preS/S bearing a myristoylation signal was localized in a compact, perinuclear pattern with strong colocalization of preS and S epitopes, while the non-myristoylated mutants demonstrated a dispersed, granular cytoplasmic distribution with weaker colocalization. CONCLUSIONS: The large deletion in 1-48preS/S in presence of the myristoylation site facilitated formation and secretion of protein particles with neutralizing preS1 epitopes at their surface and could be a useful feature for future hepatitis B vaccines.


Assuntos
Antígenos Virais/imunologia , Deleção de Genes , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Processamento de Proteína Pós-Traducional , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/sangue , Antígenos Virais/genética , Antígenos Virais/metabolismo , Vetores Genéticos , Anticorpos Anti-Hepatite B/sangue , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/genética , Vírus da Hepatite B/genética , Camundongos , Testes de Neutralização , Vírus da Floresta de Semliki/genética
2.
Diagnostics (Basel) ; 13(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998603

RESUMO

At the end of 2021, the SARS-CoV-2 Omicron variant of concern (VOC) displaced the previously dominant Delta VOC and enhanced diagnostic and therapeutic challenges worldwide. Respiratory specimens submitted to the Riga East University Hospital Laboratory Service by the central and regional hospitals of Latvia from January to March 2022 that were positive for SARS-CoV-2 RNA were tested by commercial multiplexed RT-qPCR targeting three of the Omicron VOC signature mutations: ΔH69/V70, E484A, and N501Y. Of the specimens tested and analyzed in parallel by whole-genome sequencing (WGS), 964 passed the internal quality criteria (genome coverage ≥90%, read depth ≥400×) and the Nextstrain's quality threshold for "good". We validated the detection accuracy of RT-qPCR for each target individually by using WGS as a control. The results were concordant with both approaches for 938 specimens, with the correct classification rate exceeding 96% for each target (CI 95%); however, the presumptive WHO label was misassigned for 21 specimens. The RT-qPCR genotyping provided an acceptable means to pre-monitor the prevalence of the two presumptive Omicron VOC sublineages, BA.1 and BA.2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA