Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(25): 8799-8809, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34076420

RESUMO

Sensitive and simultaneous detection of multiple cancer-related biomarkers in serum is essential for diagnosis, therapy, prognosis, and staging of cancer. Herein, we proposed a magnetically assisted sandwich-type surface-enhanced Raman scattering (SERS)-based biosensor for ultrasensitive and multiplex detection of three hepatocellular carcinoma-related microRNA (miRNA) biomarkers. The biosensor consists of an SERS tag (probe DNA-conjugated DNA-engineered fractal gold nanoparticles, F-AuNPs) and a magnetic capture substrate (capture DNA-conjugated Ag-coated magnetic nanoparticles, AgMNPs). The proposed strategy achieved simultaneous and sensitive detection of three miRNAs (miRNA-122, miRNA-223, and miRNA-21), and the limits of detection of the three miRNAs in human serum are 349 aM for miRNA-122, 374 aM for miRNA-223, and 311 aM for miRNA-21. High selectivity and accuracy of the SERS biosensor were proved by practical analysis in human serum. Moreover, the biosensor exhibited good practicability in multiplex detection of three miRNAs in 92 clinical sera from AFP-negative patients, patients before and after hepatectomy, recurred and relapse-free patients after hepatectomy, and hepatocellular carcinoma patients at distinct Barcelona clinic liver cancer stages. The experiment results demonstrate that our SERS-based assay is a promising candidate in clinical application and exhibited potential for the prediction, diagnosis, monitoring, and staging of cancers.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , MicroRNAs , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Detecção Precoce de Câncer , Fractais , Ouro , Humanos , Limite de Detecção , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , MicroRNAs/genética , Prognóstico , Análise Espectral Raman
2.
Arch Toxicol ; 95(8): 2667-2676, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34159432

RESUMO

The formation of carbonyls and epoxides in e-cigarette (EC) aerosol is possible due to heating of the liquid constituents. However, high background levels of these compounds have inhibited a clear assessment of exposure during use of ECs. An EC containing an e-liquid replaced with 10% of 13C-labeled propylene glycol and glycerol was used in a controlled use clinical study with 20 EC users. In addition, five smokers smoked cigarettes spiked with the described e-liquid. Seven carbonyls (formaldehyde, acetaldehyde, acrolein, acetone, crotonaldehyde, methacrolein, propionaldehyde) were measured in the aerosol and the mainstream smoke. Corresponding biomarkers of exposure were determined in the user's urine samples. 13C-labeled formaldehyde, acetaldehyde and acrolein were found in EC aerosol, while all seven labeled carbonyls were detected in smoke. The labeled biomarkers of exposure to formaldehyde (13C-thiazolidine carboxylic acid and 13C-N-(1,3-thiazolidine-4-carbonyl)glycine), acrolein (13C3-3-hydroxypropylmercapturic acid) and glycidol (13C3-dihydroxypropylmercapturic acid) were present in the urine of vapers indicating an EC use-specific exposure to these toxicants. However, other sources than vaping contribute to a much higher extent by several orders of magnitude to the overall exposure of these toxicants. Comparing data for the native (unlabeled) and the labeled (exposure-specific) biomarkers revealed vaping as a minor source of user's exposure to these toxicants while other carbonyls and epoxides were not detectable in the EC aerosol.


Assuntos
Aldeídos/análise , Sistemas Eletrônicos de Liberação de Nicotina , Compostos de Epóxi/análise , Vaping , Adulto , Aerossóis/análise , Biomarcadores/análise , Isótopos de Carbono , Humanos , Masculino , Fumaça/análise
3.
Anal Chem ; 92(8): 5813-5820, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32073259

RESUMO

Nanoplastic pollution is an emerging environmental concern, but current analytical approaches are facing limitations in this size range. However, the coupling of nanoparticle separation with chemical characterization bears potential to close this gap. Here, we realize the hyphenation of particle separation/characterization (field-flow fractionation (FFF), UV, and multiangle light scattering) with subsequent chemical identification by online Raman microspectroscopy (RM). The problem of low Raman scattering was overcome by trapping particles with 2D optical tweezers. This setup enabled RM to identify particles of different materials (polymers and inorganic) in the size range from 200 nm to 5 µm, with concentrations in the order of 1 mg/L (109 particles L-1). The hyphenation was realized for asymmetric flow FFF and centrifugal FFF, which separate particles on the basis of different properties. This technique shows potential for application in nanoplastic analysis, as well as many other fields of nanomaterial characterization.

4.
Anal Bioanal Chem ; 412(27): 7535-7546, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32840653

RESUMO

A novel method for the quantification of the sulfur-containing metabolites of formaldehyde (thiazolidine carboxylic acid (TCA) and thiazolidine carbonyl glycine (TCG)) and acetaldehyde (methyl thiazolidine carboxylic acid (MTCA) and methyl thiazolidine carbonyl glycine (MTCG)) was developed and validated for human urine and plasma samples. Targeting the sulfur-containing metabolites of formaldehyde and acetaldehyde in contrast to the commonly used biomarkers formate and acetate overcomes the high intra- and inter-individual variance. Due to their involvement in various endogenous processes, formate and acetate lack the required specificity for assessing the exposure to formaldehyde and acetaldehyde, respectively. Validation was successfully performed according to FDA's Guideline for Bioanalytical Method Validation (2018), showing excellent performance with regard to accuracy, precision, and limits of quantification (LLOQ). TCA, TCG, and MTCG proved to be stable under all investigated conditions, whereas MTCA showed a depletion after 21 months. The method was applied to a set of pilot samples derived from smokers who consumed unfiltered cigarettes spiked with 13C-labeled propylene glycol and 13C-labeled glycerol. These compounds were used as potential precursors for the formation of 13C-formaldehyde and 13C-acetaldehyde during combustion. Plasma concentrations were significantly lower as compared to urine, suggesting urine as suitable matrix for a biomonitoring. A smoking-related increase of unlabeled biomarker concentrations could not be shown due to the ubiquitous distribution in the environment. While the metabolites of 13C-acetaldehyde were not detected, the described method allowed for the quantification of 13C-formaldehyde uptake from cigarette smoking by targeting the biomarkers 13C-TCA and 13C-TCG in urine.Graphical abstract.


Assuntos
Acetaldeído/metabolismo , Formaldeído/metabolismo , Enxofre/sangue , Enxofre/urina , Acetaldeído/efeitos adversos , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Formaldeído/efeitos adversos , Glicina/análogos & derivados , Glicina/metabolismo , Humanos , Limite de Detecção , Metilação , Prolina/análogos & derivados , Prolina/sangue , Prolina/metabolismo , Prolina/urina , Fumar/efeitos adversos , Fumar/sangue , Fumar/metabolismo , Fumar/urina , Enxofre/metabolismo , Espectrometria de Massas em Tandem/métodos , Tiazolidinas/sangue , Tiazolidinas/metabolismo , Tiazolidinas/urina
5.
Anal Bioanal Chem ; 412(14): 3467-3476, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31950237

RESUMO

For the first time, a flow-based regenerable chemiluminescence receptor assay is established that is eminently suited as screening method for the detection of widely used tetracyclines (TCs) in environmental and food samples. The complex functionality and high reactivity of TCs complicate the creation of immunogens which is currently the bottleneck for developing sensitive immunoassays. In this case, competitive bioreceptor assays for the analysis of small organic molecules are preferable and, moreover, flow-based regenerable bioassays are optimally suited for automated analysis applications. Therefore, the solution for rapid and sensitive analysis of TCs is the regenerable CL receptor assay with a covalently immobilized DNA oligonucleotide containing the specific operator sequence tetO to which the repressor protein TetR binds only in the absence of TCs. The TC measurements are performed on the CL microarray analysis platform MCR 3 within 30 min per sample. The LoD in spiked tap water was determined to be 0.1 µg L-1, and for 1 µg L-1 TET, recoveries of 77% ± 16% were obtained. Due to the stability of the immobilized DNA oligonucleotide and the resulting regenerability of the assay for various measurements, the new method is highly cost- and resource-efficient and ideally suited for the monitoring of environmental samples in the field. Graphical abstract.


Assuntos
Antibacterianos/análise , Monitoramento Ambiental/métodos , Ácidos Nucleicos Imobilizados/química , Medições Luminescentes/métodos , Tetraciclinas/análise , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Substâncias Luminescentes/química , Medições Luminescentes/instrumentação , Luminol/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
6.
Anal Chem ; 91(18): 12055-12062, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31436433

RESUMO

With the introduction of gas-based contactless electrochemical biosensors lies the prospects of separating the sensing interface from the bioassembly platform, enhancing stability, and exploring signal transduction mechanism, all intimately linking to development of immunoassay. Herein, we report on a H2-based electrochemical biosensor whose signals derived from the chemical signal transduction between a H2 and Pd nanowires@ZIF-67 (ZIF: Zeolitic Imidazolate Frameworks) bilayered sensing interface for immunoassay. Dendritic Pt nanoparticles (DPNs) conjugated on the detection antibody were introduced on the interface of a magnetic microsphere according to an immune sandwich assembly between the antigen and antibody. H2 as a bridge originates from DPNs catalyzing NH3BH3 and links biological signals to electrical signals by reacting with Pd nanowires. Nevertheless, the response of Pd nanowires being extremely effected by O2 in air due to the competitive adsorption on the surface of Pd nanostructures as well as the reaction between chemisorbed O (Pd-O) and adsorbed dihydrogen lead to a decrease in H absorption into PdHx and poor sensing responses under low target concentration. Porous ZIF-67 (window aperture 0.331 nm) as a molecular sieve self-assembling on the surface of the Pd nanowires film could easily permeate H2 (kinetic diameter of 0.289 nm), while interferential O2 (kinetic diameter of 0.346 nm) has difficultly passing through the ZIF-67 layer to contact Pd nanowires and achieves a response of a lower concentration target as well as faster response rate. Under optimal conditions, H2-based electrochemical biosensors exhibit great response toward target alpha-fetoprotein (AFP) within a dynamic working range of 0.1-50 ng mL-1 at a detection limit of 0.04 ng mL-1. Our strategy provides a reusable sensing interface, high specificity, and acceptable accuracy for the immunoassay. In addition, it also expands a promising platform for application as a molecular sieve in electrochemical biosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Hidrogênio/química , Imunoensaio , alfa-Fetoproteínas/análise , Adsorção , Cinética , Nanofios/química , Paládio/química , Tamanho da Partícula , Propriedades de Superfície , Zeolitas/química
7.
Anal Chem ; 91(3): 2447-2454, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30609356

RESUMO

This work presented an innovative and rationally engineered palindromic molecular beacon (PMB) based "Z-scheme" photoelectrochemical (PEC) biosensing protocol for the selective screening of kanamycin (Kana) through DNA hybridization-induced conformational conversion. Interestingly, the ingeniously designed PMB integrated the multifunctional elements including recognition region, primer-like palindromic fragment, and polymerization-nicking template. The cosensitized structures consisted of CdS quantum dot functionalized hairpin DNA2 (QD-HP2) and region-selectively deposited gold nanoparticles onto {001} facets of bismuth oxychloride (BiOCl-Au). Compared with BiOCl-Au alone, the attachment of CdS QDs onto BiOCl-Au (i.e., BiOCl-Au-CdS QDs) exhibited evidently enhanced photocurrent intensity thanks to the synergistic effect of Z-scheme BiOCl-Au-CdS QDs. After incubation with target Kana, Kana-aptamer binding could induce the exposure of PMB region for hairpin DNA1 (HP1). The exposed palindromic tails hybridized with each other (like a molecular machine) to consume the substrates (dNTPs) and fuels (enzyme) for the releasing of numerous nick fragments (Nick). The as-generated nick fragments could specifically hybridize with the complementary region of QD-HP2, thus resulting in decreasing photocurrent because of the increasing spatial distance for electron transfer between two-type photosensitizers. Under optimum conditions, the PMB-based sensing system exhibited satisfying photocurrent responses toward target Kana within the working range from 50 to 5000 fM at a low detection limit of 29 fM. Impressively, the concept of a palindromic fragment-mediated primer-free biosensing strategy offers a new avenue for advanced development of efficient and convenient biodetection systems.


Assuntos
Bismuto/química , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Canamicina/análise , Nanopartículas Metálicas/química , Pontos Quânticos/química , Sulfetos/química , Animais , Antibacterianos/análise , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , DNA/química , DNA/genética , Técnicas Eletroquímicas/instrumentação , Eletrodos , Contaminação de Alimentos/análise , Ouro/química , Ouro/efeitos da radiação , Sequências Repetidas Invertidas , Luz , Limite de Detecção , Nanopartículas Metálicas/efeitos da radiação , Leite/química , Hibridização de Ácido Nucleico , Fotoquímica/métodos
8.
Analyst ; 144(3): 943-953, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30574650

RESUMO

Detection and characterization of microorganisms is essential for both clinical diagnostics and environmental studies. An emerging technique to analyse microbes at single-cell resolution is surface-enhanced Raman spectroscopy (surface-enhanced Raman scattering: SERS). Optimised SERS procedures enable fast analytical read-outs with specific molecular information, providing insight into the chemical composition of microbiological samples. Knowledge about the origin of microbial SERS signals and parameter(s) affecting their occurrence, intensity and/or reproducibility is crucial for reliable SERS-based analyses. In this work, we explore the feasibility and limitations of the SERS approach for characterizing microbial cells and investigate the applicability of SERS for single-cell sorting as well as for three-dimensional visualization of microbial communities. Analyses of six different microbial species (an archaeon, two Gram-positive bacteria, three Gram-negative bacteria) showed that for several of these organisms distinct features in their SERS spectra were lacking. As additional confounding factor, the physiological conditions of the cells (as influenced by e.g., storage conditions or deuterium-labelling) were systematically addressed, for which we conclude that the respective SERS signal at the single-cell level is strongly influenced by the metabolic activity of the analysed cells. While this finding complicates the interpretation of SERS data, it may on the other hand enable probing of the metabolic state of individual cells within microbial populations of interest.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Propriedades de Superfície
9.
Anal Bioanal Chem ; 411(19): 4951-4961, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30982928

RESUMO

Immunomagnetic separation (IMS) was combined with flow-based chemiluminescence sandwich immunoassays (CL-SIA) for the quantification of Staphylococcal enterotoxin B in milk. Therefore, iron oxide-shell silica-core magnetic nanocomposites were conjugated to biotinylated anti-SEB antibodies (MNC-IgGs). MNC-IgGs were applied successfully for (i) capturing SEB in milk samples by an affinity reaction, (ii) magnetophoretic collection on antibody spots in a channel of a flow-based immunochip, and (iii) sensitive enzymatic chemiluminescence detection of biotin labels by poly(horseradish peroxidase)-streptavidin. IMS was performed in 0.6 mL and 100 mL milk samples resulting in detection limits of 50 ng L-1 and 0.39 ng L-1, respectively, for the combined analytical method. It was shown that the assay sensitivity was dramatically improved by the combination of IMS with flow-based CL-SIA compared to CL-SIA directly applied with milk samples (detection limit 130 ng L-1). The IMS-CL-SIA has a time-to-result of 2-3 h. The reported combined analytical method can be used for a rapid control of SEB in complex food matrices such as milk. In future, even the monitoring of multiple contaminants in food or water may be performed by IMS-CL-SIA. Graphical abstract.


Assuntos
Enterotoxinas/análise , Imunoensaio/métodos , Separação Imunomagnética/instrumentação , Luminescência , Magnetismo , Leite/química , Nanocompostos/química , Staphylococcus aureus/química , Superantígenos/análise , Animais , Automação , Biotina/análise , Microbiologia de Alimentos/métodos , Peroxidase do Rábano Silvestre/química , Limite de Detecção , Estreptavidina/química
10.
Anal Bioanal Chem ; 411(10): 1943-1955, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30740634

RESUMO

Analytical microarrays feature great capabilities for simultaneous detection and quantification of multiple analytes in a single measurement. In this work, we present a rapid and simple method for bulk preparation of microarrays on polycarbonate sheets. Succinylated Jeffamine® ED-2003 was screen printed on polycarbonate sheets to create a polyfunctional shielding layer by baking at 100 °C. After microdispension of capture probes (antibodies, oligonucleotides, or small molecules) in a microarray format, chips were assembled with a flow cell from double-sided tape. It was shown that the shielding layer was firmly coated and suppressed unspecific binding of proteins. Universal applicability was demonstrated by transferring established flow-based chemiluminescence microarray measurement principles from glass slides to polycarbonate chips without loss of analytical performance. Higher chemiluminescence signals could be generated by performing heterogeneous asymmetric recombinase polymerase amplification on polycarbonate chips. Similar results could be shown for sandwich microarray immunoassays. Beyond that, lower inter- and intra-assay variances could be measured for the analysis of Legionella pneumophila Serogroup 1, strain Bellingham-1. Even surface regeneration of indirect competitive immunoassays was possible, achieving a limit of detection of 0.35 ng L-1 for enrofloxacin with polycarbonate microarray chips. Succinylated Jeffamine ED-2003 coated polycarbonate chips have great potential to replace microtiter plates by flow-based chemiluminescence microarrays for rapid analysis. Therefore, it helps analytical microarrays to advance into routine analysis and diagnostics. Graphical abstract ᅟ.


Assuntos
Anticorpos Imobilizados/química , Imunoensaio/instrumentação , Medições Luminescentes/instrumentação , Análise em Microsséries/instrumentação , Cimento de Policarboxilato/química , Ácido Succínico/química , Antibacterianos/análise , Enrofloxacina/análise , Desenho de Equipamento , Humanos , Imunoensaio/economia , Legionella pneumophila/isolamento & purificação , Doença dos Legionários/microbiologia , Medições Luminescentes/economia , Análise em Microsséries/economia
11.
Nicotine Tob Res ; 21(3): 314-322, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30265341

RESUMO

INTRODUCTION: An important basis for risk estimation for e-cigarette (e-cig) users is a well-founded dosimetry. The objective of this study was to assess the applicability of stable-isotope e-liquid ingredients for exposure studies in vapers. METHODS: E-cigs with 10% of labeled propylene glycol (PG), glycerol (G), and nicotine was used by 20 experienced vapers under controlled (Part A) and free (Part B) conditions. In Part A, 10 subjects vaped at 10 W and another 10 subjects at 18 W power setting of the e-cig. In Part B, the same subjects used the same product ad libitum in their usual environment. Five smokers, smoking 10 non-filter cigarettes, spiked with labeled PG, G, and nicotine, served as positive control during Part A. PG, G, nicotine and its metabolites were measured in plasma, urine, and saliva. RESULTS: Peak nicotine levels (sum of measured labeled and unlabeled) in plasma were lower in vapers (15.8 to 19.6 ng/mL) than in smokers (36 ng/mL). The labeled plasma nicotine levels were ten times lower than the unlabeled, reflecting the ratio in the e-liquid. PG levels in plasma and urine also reflected the vaping activities in Part A, while G in these body fluids showed no association with vaping. CONCLUSIONS: This proof of concept study shows that the application of labeled e-liquid ingredients allows the accurate quantification of the dose of nicotine and PG when other nicotine and tobacco products were used simultaneously. Unchanged G was not assessable by this approach. IMPLICATIONS: This approach allows the investigations of the absorption of potential PG-, G-, and nicotine-derived vapor constituents (eg, aldehydes and epoxides) by vaping. Appropriate studies are in progress in our laboratory.


Assuntos
Biomarcadores/análise , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Nicotina/análise , Fumar/sangue , Fumar/epidemiologia , Produtos do Tabaco/análise , Vaping/sangue , Adulto , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Fumantes/estatística & dados numéricos , Adulto Jovem
12.
Anal Chem ; 90(16): 9975-9982, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30044615

RESUMO

Using compact desktop NMR systems for rapid characterization of relaxation properties directly after synthesis can expedite the development of functional magnetic nanoparticles. Therefore, an automated system that combines a miniaturized NMR relaxometer and a flow-based microreactor for online synthesis and characterization of magnetic iron oxide nanoparticles is constructed and tested. NMR relaxation properties are quantified online with a 0.5 T permanent magnet for measurement of transverse ( T2) and longitudinal ( T1) relaxation times. Nanoparticles with a primary particle size of about 25 nm are prepared by coprecipitation in a tape-based microreactor that utilizes 3D hydrodynamic flow focusing to avoid channel clogging. Cluster sizes are expeditiously optimized for maximum transverse relaxivity of 115.5 mM s-1. The compact process control system is an efficient tool that speeds up synthesis optimization and product characterization of magnetic nanoparticles for nanomedical, theranostic, and NMR-based biosensing applications.

13.
Plant Biotechnol J ; 16(1): 27-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28421663

RESUMO

Antibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]-microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user-friendly tests for on-site analysis, requires a sensitive but also cost-effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass-assisted cloning strategy and expressed a scFv (single-chain variable fragment) format of this antibody in yeast and a chimeric full-size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production. The specific antigen-binding activity of the purified antibody was verified by surface plasmon resonance spectroscopy and ELISA, confirming the same binding specificity as its hybridoma-derived counterpart. The plant-derived antibody was used to design a lateral flow immunoassay (dipstick) for the sensitive detection of [Arg4]-microcystins at concentrations of 100-300 ng/L in freshwater samples collected at different sites. Plant-based production will likely reduce the cost of the antibody, currently the most expensive component of the dipstick immunoassay, and will allow the development of further antibody-based analytical devices and water purification adsorbents for the efficient removal of toxic contaminants.


Assuntos
Imunoensaio/métodos , Microcistinas/química , Água/química , Ensaio de Imunoadsorção Enzimática , Agricultura Molecular , Ressonância de Plasmônio de Superfície
14.
Anal Biochem ; 546: 58-64, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412142

RESUMO

Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines.


Assuntos
Água Potável/microbiologia , Higiene , Técnicas de Amplificação de Ácido Nucleico , Recombinases/metabolismo , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/isolamento & purificação , Microbiologia da Água
15.
Chem Res Toxicol ; 31(3): 176-182, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400456

RESUMO

A preceding untargeted metabolic fingerprinting approach in our lab followed by targeted fatty acid analysis revealed alterations in arachidonic acid metabolism in samples derived from a diet-controlled smoking cessation study in which compliant subjects ( N = 39) quit smoking at baseline and were followed over the course of 3 months. Consequently, urinary eicosanoids were evaluated by means of a validated LC-MS/MS method. A significant decrease was obtained for the prostaglandins PGF2α, 8-iso-PGF2α, thromboxane 2,3-d-TXB2, and leukotriene E4 upon quitting smoking. These findings indicate a partial recovery of smoking-induced alterations in the eicosanoid profile due to a reduction in oxidative stress and the inflammatory response.


Assuntos
Fumar Cigarros/urina , Eicosanoides/urina , Metaboloma , Abandono do Uso de Tabaco , Cromatografia Líquida/métodos , Fumar Cigarros/metabolismo , Eicosanoides/metabolismo , Humanos , Masculino , Metabolômica/métodos , Estresse Oxidativo , Espectrometria de Massas em Tandem/métodos , Abandono do Uso de Tabaco/métodos
16.
Anal Bioanal Chem ; 410(3): 923-931, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28808741

RESUMO

We examined the potential of stable-isotope Raman microspectroscopy (SIRM) for the evaluation of differently enriched 13C-labeled humic acids as model substances for soil organic matter (SOM). The SOM itself can be linked to the soil water holding capacity. Therefore, artificial humic acids (HA) with known isotopic compositions were synthesized and analyzed by means of SIRM. By performing a pregraphitization, a suitable analysis method was developed to cope with the high fluorescence background. Results were verified against isotope ratio mass spectrometry (IRMS). The limit of quantification was 2.1 × 10-1 13C/C tot for the total region and 3.2 × 10-2 13C/C tot for a linear correlation up to 0.25 13C/C tot. Complementary nanoscale secondary ion mass spectrometry (NanoSIMS) analysis indicated small-scale heterogeneity within the dry sample material, even though-owing to sample topography and occurring matrix effects-obtained values deviated in magnitude from those of IRMS and SIRM. Our study shows that SIRM is well-suited for the analysis of stable isotope-labeled HA. This method requires no specific sample preparation and can provide information with a spatial resolution in the micrometer range. Graphical abstract Analysis of the isotopic composition of humic acids by Raman microspectroscopy in combination with isotope ratio mass spectrometry and nanoscale secondary ion mass spectrometry.

17.
Angew Chem Int Ed Engl ; 57(44): 14328-14336, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29607589

RESUMO

Selected current trends in analytical chemistry are discussed and traced back to original work published more than a hundred years ago in the same field. Gravimetric microanalysis has been transformed into a mass-sensitive sensor technology. New developments in molecular spectroscopy are seen in Raman spectroscopy. In the area of chemical sensors, paper-based devices with visual readout (dipsticks, microfluidic pads) celebrate a revival. In "green" applications, the separation of analytes from complicated matrices is often the key to successful analysis. Continuous separation techniques are essential for the 24/7 production of goods with certified quality. Finally, micro- and nanoscale techniques rely on highly selective receptors, and their development is based on detailed understanding of the structure of ligand-receptor complexes.

18.
J Proteome Res ; 16(10): 3491-3503, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28849940

RESUMO

Untargeted GC-TOF-MS analysis proved to be a suitable analytical platform to determine alterations in the metabolic profile. Several metabolic pathways were found to be altered in a first clinical study comparing smokers against nonsmokers. Subsequently, we conducted a clinical diet-controlled study to investigate alterations in the metabolic profile during the course of 3 months of smoking cessation. Sixty male subjects were included in the study, and plasma, saliva, and urine samples were collected during four 24 h stationary visits: at baseline, while still smoking, after 1 week, after 1 month, and after 3 months of cessation. Additionally, subjects were monitored for their compliance by measurements of CO in exhaled breath and salivary cotinine throughout the study. GC-TOF-MS fingerprinting was applied to plasma, saliva, and urine samples derived from 39 compliant subjects. In total, 52 metabolites were found to be significantly altered including 26 in plasma, 20 in saliva, and 12 in urine, respectively. In agreement with a previous study comparing smokers and nonsmokers, the fatty acid and amino acid metabolism showed significant alterations upon 3 months of smoking cessation. Thus these results may indicate a partial recovery of metabolic pathway perturbations, even after a relatively short period of smoking cessation.


Assuntos
Líquidos Corporais/metabolismo , Metaboloma/genética , Metabolômica , Fumar/genética , Adulto , Impressões Digitais de DNA/métodos , Dieta , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Saliva/metabolismo , Fumar/sangue , Fumar/patologia , Fumar/urina , Abandono do Hábito de Fumar
19.
Anal Chem ; 89(10): 5637-5645, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28409636

RESUMO

Aflatoxin B1 (AFB1) monitoring has attracted extensive attention because food safety is a worldwide public health problem. Herein, we design a novel simultaneously visual and photoelectrochemical (PEC) immunosensing system for rapid sensitive detection of AFB1 in foodstuff. The immunoreaction was carried out on anti-AFB1 antibody-modified magnetic beads by using glucose oxidase (GOx)-labeled AFB1-bovine serum albumin (AFB1-BSA) conjugates as the tags with a competitive-type immunoassay format, while the visual and PEC evaluation was performed via carbon quantum dots (CQDs)-functionalized MnO2 nanosheets. Accompanying the formation of immunocomplexes, the carried GOx initially oxidized the substrate (glucose) for the generation of H2O2, which reduced/etched MnO2 nanosheets into Mn2+ ions, thereby resulting in the dissociation of CQDs from the electrode. Within the applied potentials, the photocurrent of MnO2-CQDs-modified electrode decreased with the increasing H2O2 level in the detection cell. Meanwhile, a visual detection could be performed according to the change in the color of MnO2-CQDs-coated electrode. To elaborate, this system was aggregated into a high-throughput microfluidic device to construct a semiautomatic detection cell. Under optimal conditions, the photocurrent increased with the increasing target AFB1 within a dynamic working range from 0.01 to 20 ng mL-1 with a limit of detection (LOD) of 2.1 pg mL-1 (ppt). The developed immunoassay exhibited good reproducibility and acceptable accuracy. In addition, the method accuracy relative to AFB1 ELISA kit was evaluated for analyzing naturally contaminated or spiked peanut samples, giving the well-matched results between two methods. Although our strategy was focused on the detection of target AFB1, it is easily extended to screen other small molecules or mycotoxins, thereby representing a versatile immunosensing scheme.


Assuntos
Aflatoxina B1/análise , Técnicas Eletroquímicas/métodos , Glucose Oxidase/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Aflatoxina B1/química , Carbono/química , Glucose Oxidase/metabolismo , Imunoensaio , Luz , Limite de Detecção , Magnetismo , Compostos de Manganês/química , Óxidos/química , Reprodutibilidade dos Testes , Albumina Sérica/química
20.
Anal Chem ; 89(6): 3795-3801, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28234456

RESUMO

Different configurations of photoacoustic (PA) setups for the online-measurement of gaseous N2O, employing semiconductor lasers at 2.9 and 4.5 µm, were developed and tested. Their performance was assessed with respect to the analysis of N2O emissions from wastewater treatment plants. For this purpose, the local N2O emissions of a wastewater treatment bioreactor was sampled by a dedicated mobile sampling device, and the total N2O emissions were analyzed in the gastight headspace of the bioreactor. We found that the use of a quantum-cascade laser emitting at about 4.53 µm, operated in a wavelength modulation mode, in combination with a conventional longitudinal PA cell yielded the highest sensitivity (<100 ppbv). However, we also observed a strong cross-sensitivity to humidity, which can be explained by increased V-T relaxation. This observation in combination with the limited dynamic range (max conc. ∼ 3000 ppmv) led us to the use of the less-sensitive but spectroscopically more robust 2.9 µm laser. A detection limit below 1 ppmv, a dynamic range of more than 4 orders of magnitude, no influence of humidity or any other substance relevant to the off-gas analysis, as well as a comparable low price of the laser source made it the ideal tool for N2O analyses of the off-gas of a wastewater treatment plant. Such a system was implemented successfully in a full-scale wastewater treatment plant. The results regarding the comparison of different PA setups can be transferred to other systems, and the optimum performance can be selected according to the specific demands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA