Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 38(22): e102145, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31609039

RESUMO

Type IV pili (TFP) are multifunctional micrometer-long filaments expressed at the surface of many prokaryotes. In Neisseria meningitidis, TFP are crucial for virulence. Indeed, these homopolymers of the major pilin PilE mediate interbacterial aggregation and adhesion to host cells. However, the mechanisms behind these functions remain unclear. Here, we simultaneously determined regions of PilE involved in pilus display, auto-aggregation, and adhesion by using deep mutational scanning and started mining this extensive functional map. For auto-aggregation, pili must reach a minimum length to allow pilus-pilus interactions through an electropositive cluster of residues centered around Lys140. For adhesion, results point to a key role for the tip of the pilus. Accordingly, purified pili interacting with host cells initially bind via their tip-located major pilin and then along their length. Overall, these results identify functional domains of PilE and support a direct role of the major pilin in TFP-dependent aggregation and adhesion.


Assuntos
Aderência Bacteriana , Agregação Celular , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Mutação , Neisseria meningitidis/fisiologia , Proteínas de Fímbrias/química , Regulação Bacteriana da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutagênese Sítio-Dirigida
2.
Phys Rev E ; 107(1-1): 014602, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797855

RESUMO

Microswimmers exhibit more diverse behavior in quasi-two dimensions than in three dimensions. Such behavior remains elusive due to the analytical difficulty of dealing with two parallel solid boundaries. The existence of additional obstacles in quasi-two dimensional systems further complicates the analysis. Combining experiments and hydrodynamic simulations, we investigate how the spatial dimension affects the interactions between microswimmers and obstacles. We fabricated microscopic pillars in quasi-two dimensions by etching glass coverslips and observed bacterial swimming among the pillars. Bacteria got trapped around the circular pillars and the trapping efficiency increased as the quasi-two-dimensionality was increased or as the curvature of the pillars was decreased. Numerical simulations of the simplest situation of a confined squirmer showed anomalous increase of hydrodynamic attractions, establishing that the enhanced interaction is a universal property of quasi-two-dimensional microhydrodynamics. We also demonstrated that the local curvature of the obstacle controls the trapping efficiency by experiments with elliptic pillars.

3.
Phys Rev E ; 103(1-1): 012605, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601595

RESUMO

We study the pair correlation of active Brownian particles at low density using numerical simulations and analytical calculations. We observe a winged pair correlation: While particles accumulate in front of an active particle as expected, the depletion wake consists of two depletion wings. In the limit of soft particles, we obtain a closed equation for the pair correlation, allowing us to characterize the depletion wings. In particular, we unveil two regimes at high activity, where the wings adopt a self-similar profile and decay algebraically. We also perform experiments of self-propelled Janus particles and indeed observe the depletion wings.

4.
Nat Commun ; 9(1): 4486, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367049

RESUMO

A suspension of swimming bacteria is possibly the simplest realization of active matter, i.e. a class of systems transducing stored energy into mechanical motion. Collective swimming of hydrodynamically interacting bacteria resembles turbulent flow. This seemingly chaotic motion can be rectified by a geometrical confinement. Here we report on self-organization of a concentrated suspension of motile bacteria Bacillus subtilis constrained by two-dimensional (2D) periodic arrays of microscopic vertical pillars. We show that bacteria self-organize into a lattice of hydrodynamically bound vortices with a long-range antiferromagnetic order controlled by the pillars' spacing. The patterns attain their highest stability and nearly perfect order for the pillar spacing comparable with an intrinsic vortex size of an unconstrained bacterial turbulence. We demonstrate that the emergent antiferromagnetic order can be further manipulated and turned into a ferromagnetic state by introducing chiral pillars. This strategy can be used to control a wide class of active 2D systems.

5.
Nat Commun ; 9(1): 4932, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451851

RESUMO

The original version of this Article contained errors in Fig. 2. In Fig. 2d, the label below the blue circle incorrectly read "Si,a(t) < 0" and should have read "Si,a(t) > 0". Furthermore, the sequence of labels on the side of the bottom three figures panels in Fig. 2d from top to bottom incorrectly read "S9,70 > 0, S9,70 > 0, S9,70 < 0", and should have read "S9,70 < 0, S9,70 > 0, S9,70 < 0". Finally, in the legend to Fig. 2, the scale bar size description "Scale bar: 100µm" was incorrectly placed in the description of panel c, and should have been placed in the description of panel d. These errors have been corrected in both the PDF and HTML versions of the Article.

6.
Phys Rev E ; 95(2-1): 020601, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297912

RESUMO

We study the collective dynamics of elongated swimmers in a very thin fluid layer by devising long filamentous nontumbling bacteria. The strong confinement induces weak nematic alignment upon collision, which, for large enough density of cells, gives rise to global nematic order. This homogeneous but fluctuating phase, observed on the largest experimentally accessible scale of millimeters, exhibits the properties predicted by standard models for flocking, such as the Vicsek-style model of polar particles with nematic alignment: true long-range nematic order and nontrivial giant number fluctuations.


Assuntos
Fenômenos Fisiológicos Bacterianos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cefalexina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Movimento , Gravação em Vídeo
7.
Artigo em Inglês | MEDLINE | ID: mdl-26651697

RESUMO

To elucidate mechanisms of mesoscopic turbulence exhibited by active particles, we experimentally study turbulent states of nonliving self-propelled particles. We realize an experimental system with dense suspensions of asymmetrical colloidal particles (Janus particles) self-propelling on a two-dimensional surface under an ac electric field. Velocity fields of the Janus particles in the crowded situation can be regarded as a sort of turbulence because it contains many vortices and their velocities change abruptly. Correlation functions of their velocity field reveal the coexistence of polar alignment and antiparallel alignment interactions, which is considered to trigger mesoscopic turbulence. Probability distributions of local order parameters for polar and nematic orders indicate the formation of local clusters with particles moving in the same direction. A broad peak in the energy spectrum of the velocity field appears at the spatial scales where the polar alignment and the cluster formation are observed. Energy is injected at the particle scale and conserved quantities such as energy could be cascading toward the larger clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA