RESUMO
To investigate the role of mechanical constraints in morphogenesis and development, we have developed a pipeline of techniques based on incompressible elastic sensors. These techniques combine the advantages of incompressible liquid droplets, which have been used as precise in situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to use. Droplets of a polydimethylsiloxane mix, made fluorescent through specific covalent binding to a rhodamin dye, are produced by a microfluidics device. The elastomer rigidity after polymerization is adjusted to the tissue rigidity. Its mechanical properties are carefully calibrated in situ, for a sensor embedded in a cell aggregate submitted to uniaxial compression. The local shear stress tensor is retrieved from the sensor shape, accurately reconstructed through an active contour method. In vitro, within cell aggregates, and in vivo, in the prechordal plate of the zebrafish embryo during gastrulation, our pipeline of techniques demonstrates its efficiency to directly measure the three dimensional shear stress repartition within a tissue.
Assuntos
Embrião não Mamífero/citologia , Imageamento Tridimensional/métodos , Resistência ao Cisalhamento , Animais , Agregação Celular , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Peixe-ZebraRESUMO
The origin of cell death in the magnetomechanical actuation of cells induced by magnetic nanoparticle motion under low-frequency magnetic fields is still elusive. Here, a miniaturized electromagnet fitted under a confocal microscope is used to observe in real time cells specifically targeted by superparamagnetic nanoparticles and exposed to a low-frequency rotating magnetic field. Our analysis reveals that the lysosome membrane is permeabilized in only a few minutes after the start of magnetic field application, concomitant with lysosome movements toward the nucleus. Those events are associated with disorganization of the tubulin microtubule network and a change in cell morphology. This miniaturized electromagnet will allow a deeper insight into the physical, molecular, and biological process occurring during the magnetomechanical actuation of magnetic nanoparticles.
Assuntos
Nanopartículas de Magnetita , Nanopartículas , Lisossomos , Campos Magnéticos , Magnetismo , Movimento (Física)RESUMO
Correctly delimiting species and populations is a prerequisite for studies of connectivity, adaptation and conservation. Genomic data are particularly useful to test species differentiation for organisms with few informative morphological characters or low discrimination of cytoplasmic markers, as in Scleractinians. Here we applied Restriction site Associated DNA sequencing (RAD-sequencing) to the study of species differentiation and genetic structure in populations of Pocillopora spp. from Oman and French Polynesia, with the objectives to test species hypotheses, and to study the genetic structure among sampling sites within species. We focused here on coral colonies morphologically similar to P. acuta (damicornis type ß). We tested the impact of different filtering strategies on the stability of the results. The main genetic differentiation was observed between samples from Oman and French Polynesia. These samples corresponded to different previously defined primary species hypotheses (PSH), i.e., PSHs 12 and 13 in Oman, and PSH 5 in French Polynesia. In Oman, we did not observe any clear differentiation between the two putative species PSH 12 and 13, nor between sampling sites. In French Polynesia, where a single species hypothesis was studied, there was no differentiation between sites. Our analyses allowed the identification of clonal lineages in Oman and French Polynesia. The impact of clonality on genetic diversity is discussed in light of individual-based simulations.
Assuntos
Antozoários , Animais , Antozoários/genética , Estruturas Genéticas , Metagenômica , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Mycobacterium tuberculosis complex (MTC) CRISPR locus diversity has long been studied solely investigating the presence/absence of a known set of spacers. Unveiling the genetic mechanisms of its evolution requires a more exhaustive reconstruction in a large amount of representative strains. In this article, we point out and resolve, with a new pipeline, the problem of CRISPR reconstruction based directly on short read sequences in M. tuberculosis. We first show that the process we set up, that we coin as "CRISPRbuilder-TB" (https://github.com/cguyeux/CRISPRbuilder-TB), allows an efficient reconstruction of simulated or real CRISPRs, even when including complex evolutionary steps like the insertions of mobile elements. Compared to more generalist tools, the whole process is much more precise and robust, and requires only minimal manual investigation. Second, we show that more than 1/3 of the currently complete genomes available for this complex in the public databases contain largely erroneous CRISPR loci. Third, we highlight how both the classical experimental in vitro approach and the basic in silico spoligotyping provided by existing analytic tools miss a whole diversity of this locus in MTC, by not capturing duplications, spacer and direct repeats variants, and IS6110 insertion locations. This description is extended in a second article that describes MTC-CRISPR diversity and suggests general rules for its evolution. This work opens perspectives for an in-depth exploration of M. tuberculosis CRISPR loci diversity and of mechanisms involved in its evolution and its functionality, as well as its adaptation to other CRISPR locus-harboring bacterial species.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Genes BacterianosRESUMO
The relationship between different levels of integration is a key feature for understanding the genotype-phenotype map. Here, we describe a novel method of integrated data analysis that incorporates protein abundance data into constraint-based modeling to elucidate the biological mechanisms underlying phenotypic variation. Specifically, we studied yeast genetic diversity at three levels of phenotypic complexity in a population of yeast obtained by pairwise crosses of eleven strains belonging to two species, Saccharomyces cerevisiae and S. uvarum. The data included protein abundances, integrated traits (life-history/fermentation) and computational estimates of metabolic fluxes. Results highlighted that the negative correlation between production traits such as population carrying capacity (K) and traits associated with growth and fermentation rates (Jmax) is explained by a differential usage of energy production pathways: a high K was associated with high TCA fluxes, while a high Jmax was associated with high glycolytic fluxes. Enrichment analysis of protein sets confirmed our results. This powerful approach allowed us to identify the molecular and metabolic bases of integrated trait variation, and therefore has a broad applicability domain.
Assuntos
Biologia Computacional/métodos , Saccharomyces cerevisiae , Variação Biológica da População/genética , Variação Biológica da População/fisiologia , Bases de Dados Genéticas , Fermentação/genética , Glicólise/genética , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC: phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.
Assuntos
Botrytis , Proteômica , Biomassa , Botrytis/genética , Proteínas Fúngicas/genética , Doenças das Plantas , PlantasRESUMO
In the framework of algebraic inversion, magnetic resonance elastography (MRE) repeatability, reproducibility and robustness were evaluated on extracted shear velocities (or elastic moduli). The same excitation system was implemented at two sites equipped with clinical MR scanners of 1.5 and 3 T. A set of four elastic, isotropic, homogeneous calibrated phantoms of distinct elasticity representing the spectrum of liver fibrosis severity was mechanically characterized. The repeatability of the measurements and the reproducibility between the two platforms were found to be excellent with mean coefficients of variations of 1.62% for the shear velocity mean values and 1.95% for the associated standard deviations. MRE velocities were robust to the amplitude and pattern variations of the displacement field with virtually no difference between outcomes from both magnets at identical excitation frequencies, even when the displacement field amplitude was six times smaller. However, MRE outcomes were very sensitive to the number of voxels per wavelength, s, of the recorded displacement field, with relative biases reaching 62% and precision loss by a factor of up to 23.5. For both magnetic field strengths, MRE accuracy and precision were largely degraded outside of established conditions of validity (6 â² s â² 9), resulting in estimated shear velocity values not significantly different between phantoms of increasing elasticity. When fulfilling the spatial sampling conditions, either prospectively in the acquisition or retrospectively before the reconstruction, MRE produced quantitative measurements that allowed to unambiguously discriminate, with infinitesimal p values, between the phantoms mimicking increasing severity of liver fibrosis.
Assuntos
Técnicas de Imagem por Elasticidade , Elasticidade , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Fenômenos Biomecânicos , Humanos , Reprodutibilidade dos Testes , Razão Sinal-RuídoRESUMO
We consider the wet adhesion between two deformable fibers. We show that a strong adhesive force can be maintained by coupling the fibers deformation with capillarity. We further identify a regime where, contrary to capillary adhesion, the pull-off force remains constant throughout debonding. In this peeling regime, elasticity, which tends to minimize the deformation of the object, is balanced by capillarity which maximizes the liquid spreading. We show that the adhesive force and the existence region of this self-adjusted peeling regime depend on a single dimensionless parameter, and can thus be controlled by tuning the material properties.
RESUMO
Taking as an example the simple CH3 radical, this work demonstrates the cooperative character of the spin-polarization phenomenon of the closed-shell core in free radicals. Spin polarization of CH σ bonds is not additive here, as spin polarization of one bond enhances that of the next bond. This cooperativity is demonstrated by a series of configuration interaction calculations converging to the full valence limit and is rationalized by analytic developments. The same phenomenon is shown to take place in those diradicals where spin polarization plays a major role, as illustrated in square planar carbo-cyclobutadiene C12H4. The treatment of cooperativity represents a challenge for usual post-Hatree-Fock methods.
RESUMO
Calcite processed particles (CaPPs, Megagreen®) elaborated from sedimentary limestone rock, and finned by tribomecanic process were found to increase photosynthetic CO2 fixation grapevines and stimulate growth of various cultured plants. Due to their processing, the CaPPs present a jagged shape with some invaginations below the micrometer size. We hypothesised that CaPPs could have a nanoparticle (NP)-like effects on plants. Our data show that CaPPs spontaneously induced reactive oxygen species (ROS) in liquid medium. These ROS could in turn induce well-known cellular events such as increase in cytosolic Ca2+, biotic ROS generation and activation of anion channels indicating that these CaPPs could activate various signalling pathways in a NP-like manner.
Assuntos
Carbonato de Cálcio/farmacologia , Sedimentos Geológicos/química , Nicotiana/citologia , Cálcio/metabolismo , Células Cultivadas , Nanopartículas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismoRESUMO
Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.
Title: Impact limité de la lutte antivectorielle sur la structure des populations de Glossina fuscipes fuscipes dans le foyer de la maladie du sommeil de Maro, Tchad. Abstract: Les mouches tsé-tsé (genre Glossina) transmettent des trypanosomes mortels aux populations humaines ainsi qu'aux animaux domestiques en Afrique sub-saharienne. Certains foyers de la trypanosomiase humaine Africaine due à Trypanosoma brucei gambiense (THA-g) persistent au sud du Tchad, où un programme de lutte antivectorielle a été mis en place contre le vecteur local de la maladie, Glossina fuscipes fuscipes, en particulier à Maro en 2018. Nous avons analysé la structure génétique des populations de G. f. fuscipes de ce foyer à T0 (avant lutte), une année après le début de la lutte (T1), et 18 mois après (T2). La plupart des mouches capturées après le début de la lutte ont montré un profil génétique local (survivants locaux), mais quelques-unes d'entre elles présentaient des génotypes d'individus atypiques. Par ailleurs, la présence de perturbations des signatures d'isolement par la distance (augmentation de la distance génétique avec la distance géographique), l'absence de signature génétique d'un goulot d'étranglement, et un accroissement de la diversité génétique entre T0 et T2 sont des arguments forts en faveur de la recolonisation de la zone par des mouches d'origines variées, tout en témoignant des effets limités de la campagne de lutte dans ce foyer. Ces résultats conduisent à recommander une lutte et une surveillance continues dans le foyer de Maro. Une attention particulière devra par ailleurs être prêtée à l'autre côté de la rive, située côté République Centre Africaine, dont le statut épidémiologique reste inconnu concernant les tsé-tsé et la THA-g.
Assuntos
Aranhas , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/genética , Chade/epidemiologia , Trypanosoma brucei gambiense/genética , Animais DomésticosRESUMO
COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.
Assuntos
Microbiota , Rios , Máscaras , Fotólise , Polipropilenos , Biofilmes , PlásticosRESUMO
BACKGROUND: The time between the appearance of successive leaves, or phyllochron, characterizes the vegetative development of annual plants. Hypothesis testing models, which allow the comparison of phyllochrons between genetic groups and/or environmental conditions, are usually based on regression of thermal time on the number of leaves; most of the time a constant leaf appearance rate is assumed. However regression models ignore auto-correlation of the leaf number process and may lead to biased testing procedures. Moreover, the hypothesis of constant leaf appearance rate may be too restrictive. METHODS: We propose a stochastic process model in which emergence of new leaves is considered to result from successive time-to-events. This model provides a flexible and more accurate modeling as well as unbiased testing procedures. It was applied to an original maize dataset collected in the field over three years on plants originating from two divergent selection experiments for flowering time in two maize inbred lines. RESULTS AND CONCLUSION: We showed that the main differences in phyllochron were not observed between selection populations but rather between ancestral lines, years of experimentation and leaf ranks. Our results highlight a strong departure from the assumption of a constant leaf appearance rate over a season which could be related to climate variations, even if the impact of individual climate variables could not be clearly determined.
RESUMO
The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.
Assuntos
Borboletas , Animais , Borboletas/genética , Adaptação Fisiológica , Fenótipo , Genômica , Cromossomos/genéticaRESUMO
The proliferation of rumors on social media has become a major concern due to its ability to create a devastating impact. Manually assessing the veracity of social media messages is a very time-consuming task that can be much helped by machine learning. Most message veracity verification methods only exploit textual contents and metadata. Very few take both textual and visual contents, and more particularly images, into account. Moreover, prior works have used many classical machine learning models to detect rumors. However, although recent studies have proven the effectiveness of ensemble machine learning approaches, such models have seldom been applied. Thus, in this paper, we propose a set of advanced image features that are inspired from the field of image quality assessment, and introduce the Multimodal fusiON framework to assess message veracIty in social neTwORks (MONITOR), which exploits all message features by exploring various machine learning models. Moreover, we demonstrate the effectiveness of ensemble learning algorithms for rumor detection by using five metalearning models. Eventually, we conduct extensive experiments on two real-world datasets. Results show that MONITOR outperforms state-of-the-art machine learning baselines and that ensemble models significantly increase MONITOR's performance.
RESUMO
Background: For several decades, an increase in disease or pest emergences due to anthropogenic introduction or environmental changes has been recorded. This increase leads to serious threats to the genetic and species diversity of numerous ecosystems. Many of these events involve species with poor or no genomic resources (called here "orphan species"). This lack of resources is a serious limitation to our understanding of the origin of emergent populations, their ability to adapt to new environments and to predict future consequences to biodiversity. Analyses of genetic diversity are an efficient method to obtain this information rapidly, but require available polymorphic genetic markers. New information: We developed a generic bioinformatics pipeline to rapidly isolate such markers with the goal for the pipeline to be applied in studies of invasive taxa from different taxonomic groups, with a special focus on forest fungal pathogens and insect pests. This pipeline is based on: 1) an automated de novo genome assembly obtained from shotgun whole genome sequencing using paired-end Illumina technology; 2) the isolation of single-copy genes conserved in species related to the studied emergent organisms; 3) primer development for multiplexed short sequences obtained from these conserved genes. Previous studies have shown that intronic regions of these conserved genes generally contain several single nucleotide polymorphisms within species. The pipeline's functionality was evaluated with sequenced genomes of five invasive or expanding pathogen and pest species in Europe (Armillariaostoyae (Romagn.) Herink 1973, Bursaphelenchusxylophilus Steiner & Buhrer 1934, Sphaeropsissapinea (fr.) Dicko & B. Sutton 1980, Erysiphealphitoides (Griffon & Maubl.) U. Braun & S. Takam. 2000, Thaumetopoeapityocampa Denis & Schiffermüller, 1775). We successfully isolated several pools of one hundred short gene regions for each assembled genome, which can be amplified in multiplex. The bioinformatics pipeline is user-friendly and requires little computational resources. This easy-to-set-up and run method for genetic marker identification will be useful for numerous laboratories studying biological invasions, but with limited resources and expertise in bioinformatics.
RESUMO
To respond to the social challenge of medical knowledge democratisation, numerous initiatives have been developed: information, training or consultation of patients or research applications funded by associations of patients. Only a few numbers of collaborations are initiated by the persons directly involved (patients and relatives) or fulfill association research need. We have adopted and tested such an approach with the French fibromyalgia association (Fibromyalgie France). Our work demonstrates the interest to use data collected by associations of patients to answer to their questioning or to rise further relevant research questions. Such participative approach will have a pertinent and significant impact on the knowledge of diseases and on the development of collaborative actions of research, providing a better answer to patient needs, while being methodologically rigorous.
TITLE: Production de savoirs à partir de données collectées par les associations de malades - L'exemple de la fibromyalgie. ABSTRACT: Pour répondre au défi sociétal de démocratisation de l'accès à la connaissance, différentes initiatives de recherches participatives se développent : actions d'information, de formation ou de consultation des citoyens ou par l'intermédiaire de demandes de financement par des chercheurs auprès des associations. Cependant, peu des collaborations chercheurs-malades sont à l'initiative des personnes concernées, les patients et leurs familles. Nous avons adopté et testé cette démarche à la demande et en coopération avec l'association Fibromyalgie France.
Assuntos
Coleta de Dados/métodos , Fibromialgia , Conhecimento , Participação do Paciente , Bases de Dados Factuais/normas , Bases de Dados Factuais/provisão & distribuição , Fibromialgia/epidemiologia , Fibromialgia/patologia , França/epidemiologia , Humanos , Participação do Paciente/métodos , Grupo AssociadoRESUMO
The preparation of well diffracting crystals and their handling before their X-ray analysis are two critical steps of biocrystallographic studies. We describe a versatile microfluidic chip that enables the production of crystals by the efficient method of counter-diffusion. The convection-free environment provided by the microfluidic channels is ideal for crystal growth and useful to diffuse a substrate into the active site of the crystalline enzyme. Here we applied this approach to the CCA-adding enzyme of the psychrophilic bacterium Planococcus halocryophilus in the presented example. After crystallization and substrate diffusion/soaking, the crystal structure of the enzyme:substrate complex was determined at room temperature by serial crystallography and the analysis of multiple crystals directly inside the chip. The whole procedure preserves the genuine diffraction properties of the samples because it requires no crystal handling.
Assuntos
Cristalização/métodos , Enzimas/química , Microfluídica/métodosRESUMO
Understanding the dynamics of macromolecular assemblies in solution, such as Liquid-Liquid Phase Separation (LLPS), represents technologic and fundamental challenges in many fields. In cell biology, such dynamics are of great interest, because of their involvement in subcellular processes. In our study, we aimed to control the assembly of macromolecules in aqueous semi-permeable vesicles, that we named osmosomes, using microfluidics. We developed a microfluidic chip that allows for producting and trapping Giant Unilamellar Vesicles (GUVs) encapsulating macromolecules. This device also allows for modification of the composition of the inner phase and of the membranes of the trapped GUVs. The vesicles are produced from water-in-oil-in-water (w/o/w) double emulsions in less than 20 min after discarding the oil phase. They are highly monodisperse and their diameter can be modulated between 20 and 110 µm by tuning the flow rates of fluid phases. Their unilamellarity is proofed by two techniques: (1) fluorescence quenching experiments and (2) the insertion of the α-hemolysin membrane protein pore. We demonstrate that the internal pH of osmosomes can be tuned in less than 1 min by controlling solvent exchanges through the α-hemolysin pores. The detailed analysis of the exchange kinetics suggests that the microfluidic chip provides an efficient pore formation due to the physical trapping of vesicles and the constant flow rate. Finally, we show a proof of concept for macromolecular assembly within osmosomes by pH-triggered LLPS of wheat proteins within a few minutes.
RESUMO
The true lavender Lavandula angustifolia Miller is a Mediterranean aromatic shrub widely cultivated for its high quality essential oil used in perfumery and phytotherapy. Despite its economic importance, the intra-specific diversity among wild, non-cultivated plants remains poorly understood. We analyzed the structure of the chemical and genetic diversity of plants from 14 sites sampled over the entire native range of the true lavender. Volatile organic compounds of inflorescences were analyzed using gas chromatography coupled to mass spectrometry. Genotyping was performed with fingerprinting genetic markers. To limit the influence of environmental variability on chemical composition, plants were grown in the same conditions in a common garden. Without prior knowledge, discriminant analysis of principal component identified unambiguously four distinct chemotypes among three genetic populations. Co-inertia analysis and supervised analysis which integrated multiple datasets indicated a strong congruency between chemical and genetic patterns. Two distinct genetic units were located at the edge of the distribution area in the south of Italy and in the northeast of Spain, and were associated with two distinct chemotypes. Our results confirmed the existence of three genetically distinct entities, suggesting speciation. All French populations and the Italian Piedmontese population were genetically homogeneous but separated in two distinct chemotypes. The dominant chemotype was present in the center of the native range in southeastern France and was at the origin of the current most cultivated French varieties. Its main compounds were linalyl acetate, linalool, and caryophyllene oxide. The second French chemotype was found in south of Massif Central and presented high abundance of valuable linalyl and lavandulyl acetates. Linalool, eucalyptol, ß-caryophyllene, borneol, camphor, and cis-sabinene-hydrate were significantly associated with southern latitudes and their role would be worth exploring.