Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artif Organs ; 38(5): 374-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24118024

RESUMO

The PediPump was implanted in six healthy lambs (mean 25.6 ± 1.4 kg) between the left ventricular apex and the descending aorta to evaluate in vivo performance for up to 30 days. Anticoagulation was achieved by continuous heparin infusion. Three animals were euthanized prematurely, two because of respiratory dysfunction and one because of deteriorating pump performance resulting from thrombus formation inside the pump. Three lambs were electively sacrificed 30 days after implantation; all had stable hemodynamics and minimal hemolysis, as indicated by low plasma free hemoglobin (2.5 ± 3.1 mg/dL). Mean 30-day pump flow was 1.8 ± 0.1 L/min at a pump speed of 12 200 ± 400 rpm. Neither activated clotting time nor activated partial thromboplastin time followed the changes in heparin dose. At necropsy, depositions were observed at the front (n = 1) and rear rotor axial positioning stops (n = 4); improved polishing techniques on the stationary stop surfaces and the addition of a hard-carbon, thin-film coating on the rotating stop of the pumps used for the last two experiments addressed the deposition seen earlier. In conclusion, the PediPump showed excellent hydraulic performance and minimal hemolysis during support for up to 30 days. Depositions observed at the axial positioning stops in earlier experiments were addressed by design and material refinements. We continue to focus on developing effective anticoagulation management in the lamb model as well as on further evaluating and demonstrating pump biocompatibility.


Assuntos
Cardiopatias Congênitas/cirurgia , Ventrículos do Coração/cirurgia , Coração Auxiliar , Animais , Anticoagulantes/uso terapêutico , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/fisiopatologia , Ventrículos do Coração/fisiopatologia , Coração Auxiliar/efeitos adversos , Hemodinâmica , Desenho de Prótese , Ovinos
2.
J Biomech Eng ; 132(2): 025001, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20370251

RESUMO

Orthopaedic research on in vitro forces applied to bones, tendons, and ligaments during joint loading has been difficult to perform because of limitations with existing robotic simulators in applying full-physiological loading to the joint under investigation in real time. The objectives of the current work are as follows: (1) describe the design of a musculoskeletal simulator developed to support in vitro testing of cadaveric joint systems, (2) provide component and system-level validation results, and (3) demonstrate the simulator's usefulness for specific applications of the foot-ankle complex and knee. The musculoskeletal simulator allows researchers to simulate a variety of loading conditions on cadaver joints via motorized actuators that simulate muscle forces while simultaneously contacting the joint with an external load applied by a specialized robot. Multiple foot and knee studies have been completed at the Cleveland Clinic to demonstrate the simulator's capabilities. Using a variety of general-use components, experiments can be designed to test other musculoskeletal joints as well (e.g., hip, shoulder, facet joints of the spine). The accuracy of the tendon actuators to generate a target force profile during simulated walking was found to be highly variable and dependent on stance position. Repeatability (the ability of the system to generate the same tendon forces when the same experimental conditions are repeated) results showed that repeat forces were within the measurement accuracy of the system. It was determined that synchronization system accuracy was 6.7+/-2.0 ms and was based on timing measurements from the robot and tendon actuators. The positioning error of the robot ranged from 10 microm to 359 microm, depending on measurement condition (e.g., loaded or unloaded, quasistatic or dynamic motion, centralized movements or extremes of travel, maximum value, or root-mean-square, and x-, y- or z-axis motion). Algorithms and methods for controlling specimen interactions with the robot (with and without muscle forces) to duplicate physiological loading of the joints through iterative pseudo-fuzzy logic and real-time hybrid control are described. Results from the tests of the musculoskeletal simulator have demonstrated that the speed and accuracy of the components, the synchronization timing, the force and position control methods, and the system software can adequately replicate the biomechanics of human motion required to conduct meaningful cadaveric joint investigations.


Assuntos
Pé/fisiologia , Articulação do Joelho/fisiologia , Movimento/fisiologia , Postura/fisiologia , Tendões/fisiologia , Algoritmos , Fenômenos Biomecânicos , Cadáver , Humanos , Movimento (Física) , Software
3.
Artif Organs ; 33(11): 1005-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20050296

RESUMO

Cleveland Clinic's PediPump (Cleveland, OH, USA) is a ventricular assist device designed for the support of pediatric patients. The PediPump is a mixed-flow ventricular assist device with a magnetically suspended impeller measuring 10.5 mm in diameter by 64.5 mm in length. Progress and achievements for the PediPump program are considered according to the development project's three primary objectives: Basic engineering: along with size reductions, substantial design improvements have been incorporated in each design iteration including the motor, magnetic bearings, axial touch points, and heat transfer path; Anatomic modeling and device fitting studies: Techniques based on computed tomography and magnetic resonance imaging have been developed to create three-dimensional anatomic-modeling and device-fitting tools to facilitate device implantation and to assist in preoperative planning. For in vivo testing, to date, six acute (6-h duration) and nine chronic (30-day target duration) implantations have been performed in sheep; the implantation of the PediPump appears to be relatively easy with excellent hemodynamic performance and minimal hemolysis during support. Cleveland Clinic's PediPump program supported by the National Heart, Lung and Blood Institute's Pediatric Circulatory Support Program has led to the development of a pediatric ventricular assist device that has satisfactory performance in preclinical evaluation and appears to be ready to support a program of clinical testing.


Assuntos
Implante de Prótese de Valva Cardíaca , Coração Auxiliar , Animais , Hemodinâmica , Hemólise , Humanos , Lactente , Pediatria/instrumentação , Desenho de Prótese , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA