Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Europace ; 21(1): 41-47, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085018

RESUMO

AIMS: Early detection of atrial fibrillation (AF) is essential for stroke prevention. Emerging technologies such as smartphone cameras using photoplethysmography (PPG) and mobile, internet-enabled electrocardiography (iECG) are effective for AF screening. This study compared a PPG-based algorithm against a cardiologist's iECG diagnosis to distinguish between AF and sinus rhythm (SR). METHODS AND RESULTS: In this prospective, two-centre, international, clinical validation study, we recruited in-house patients with presumed AF and matched controls in SR at two university hospitals in Switzerland and Germany. In each patient, a PPG recording on the index fingertip using a regular smartphone camera followed by iECG was obtained. Photoplethysmography recordings were analysed using an automated algorithm and compared with the blinded cardiologist's iECG diagnosis. Of 672 patients recruited, 80 were excluded mainly due to insufficient PPG/iECG quality, leaving 592 patients (SR: n = 344, AF: n = 248). Based on 5 min of PPG heart rhythm analysis, the algorithm detected AF with a sensitivity of 91.5% (95% confidence interval 85.9-95.4) and specificity of 99.6% (97.8-100). By reducing analysis time to 1 min, sensitivity was reduced to 89.9% (85.5-93.4) and specificity to 99.1% (97.5-99.8). Correctly classified rate was 88.8% for 1-min PPG analysis and dropped to 60.9% when the threshold for the analysed file was set to 5 min of good signal quality. CONCLUSION: This is the first prospective clinical two-centre study to demonstrate that detection of AF by using a smartphone camera alone is feasible, with high specificity and sensitivity. Photoplethysmography signal analysis appears to be suitable for extended AF screening. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, number NCT02949180, https://clinicaltrials.gov/ct2/show/NCT02949180.


Assuntos
Fibrilação Atrial/diagnóstico , Frequência Cardíaca , Fotopletismografia/instrumentação , Smartphone , Telemedicina/instrumentação , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Fibrilação Atrial/fisiopatologia , Diagnóstico Precoce , Eletrocardiografia , Feminino , Alemanha , Humanos , Internet , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Método Simples-Cego , Suíça
2.
JACC Clin Electrophysiol ; 5(2): 199-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30784691

RESUMO

OBJECTIVES: The WATCH AF (SmartWATCHes for Detection of Atrial Fibrillation) trial compared the diagnostic accuracy to detect atrial fibrillation (AF) by a smartwatch-based algorithm using photoplethysmographic (PPG) signals with cardiologists' diagnosis by electrocardiography (ECG). BACKGROUND: Timely detection of AF is crucial for stroke prevention. METHODS: In this prospective, 2-center, case-control trial, a PPG pulse wave recording using a commercially available smartwatch was obtained along with Internet-enabled mobile ECG in 672 hospitalized subjects. PPG recordings were analyzed by a novel automated algorithm. Cardiologists' diagnoses were available for 650 subjects, although 142 (21.8%) datasets were not suitable for PPG analysis, among them 101 (15.1%) that were also not interpretable by the automated Internet-enabled mobile ECG algorithm, resulting in a sample size of 508 subjects (mean age 76.4 years, 225 women, 237 with AF) for the main analyses. RESULTS: For the PPG algorithm, we found a sensitivity of 93.7% (95% confidence interval [CI]: 89.8% to 96.4%), a specificity of 98.2% (95% CI: 95.8% to 99.4%), and 96.1% accuracy (95% CI: 94.0% to 97.5%) to detect AF. CONCLUSIONS: The results of the WATCH AF trial suggest that detection of AF using a commercially available smartwatch is in principle feasible, with very high diagnostic accuracy. Applicability of the tested algorithm is currently limited by a high dropout rate as a result of insufficient signal quality. Thus, achieving sufficient signal quality remains challenging, but real-time signal quality checks are expected to improve signal quality. Whether smartwatches may be useful complementary tools for convenient long-term AF screening in selected at-risk patients must be evaluated in larger population-based samples. (SmartWATCHes for Detection of Atrial Fibrillation [WATCH AF]:; NCT02956343).


Assuntos
Fibrilação Atrial/diagnóstico , Eletrocardiografia/instrumentação , Fotopletismografia/instrumentação , Análise de Onda de Pulso/instrumentação , Dispositivos Eletrônicos Vestíveis , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Fotopletismografia/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA