Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 11: 241-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880832

RESUMO

The IrisPlex system is a DNA-based test system for the prediction of human eye colour from biological samples and consists of a single forensically validated multiplex genotyping assay together with a statistical prediction model that is based on genotypes and phenotypes from thousands of individuals. IrisPlex predicts blue and brown human eye colour with, on average, >94% precision accuracy using six of the currently most eye colour informative single nucleotide polymorphisms (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2 (MATP) rs16891982, TYR rs1393350, and IRF4 rs12203592) according to a previous study, while the accuracy in predicting non-blue and non-brown eye colours is considerably lower. In an effort to vigorously assess the IrisPlex system at the international level, testing was performed by 21 laboratories in the context of a collaborative exercise divided into three tasks and organised by the European DNA Profiling (EDNAP) Group of the International Society of Forensic Genetics (ISFG). Task 1 involved the assessment of 10 blood and saliva samples provided on FTA cards by the organising laboratory together with eye colour phenotypes; 99.4% of the genotypes were correctly reported and 99% of the eye colour phenotypes were correctly predicted. Task 2 involved the assessment of 5 DNA samples extracted by the host laboratory from simulated casework samples, artificially degraded, and provided to the participants in varying DNA concentrations. For this task, 98.7% of the genotypes were correctly determined and 96.2% of eye colour phenotypes were correctly inferred. For Tasks 1 and 2 together, 99.2% (1875) of the 1890 genotypes were correctly generated and of the 15 (0.8%) incorrect genotype calls, only 2 (0.1%) resulted in incorrect eye colour phenotypes. The voluntary Task 3 involved participants choosing their own test subjects for IrisPlex genotyping and eye colour phenotype inference, while eye photographs were provided to the organising laboratory and judged; 96% of the eye colour phenotypes were inferred correctly across 100 samples and 19 laboratories. The high success rates in genotyping and eye colour phenotyping clearly demonstrate the reproducibility and the robustness of the IrisPlex assay as well as the accuracy of the IrisPlex model to predict blue and brown eye colour from DNA. Additionally, this study demonstrates the ease with which the IrisPlex system is implementable and applicable across forensic laboratories around the world with varying pre-existing experiences.


Assuntos
DNA/genética , Cor de Olho/genética , Humanos
2.
Investig Genet ; 4(1): 8, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23618387

RESUMO

BACKGROUND: The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. METHODS: Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. RESULTS: Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values <0.01) and for hairs (P-values <0.036). In long-term routine use of the two filter devices, DNA extracts purified with Amicon Ultra 30 K were considerably less PCR-inhibitory in Quantifiler Human qPCR analysis compared to Microsep 30 K. CONCLUSIONS: Amicon Ultra 30 K performed better than Microsep 30 K due to higher DNA recovery and more efficient removal of PCR-inhibitory substances. The different performances of the filter devices are likely caused by the quality of the filters and plastic wares, for example, their DNA binding properties. DNA purification using centrifugal filter devices can be necessary for successful DNA profiling of impure crime scene samples and for consistency between different PCR-based analysis systems, such as quantification and STR analysis. In order to maximize the possibility to obtain complete STR DNA profiles and to create an efficient workflow, the level of DNA purification applied should be correlated to the inhibitor-tolerance of the STR analysis system used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA