Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(11): 6350-6362, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871618

RESUMO

Winter climate warming is rapidly leading to changes in snow depth and soil temperatures across mid- and high-latitude ecosystems, with important implications for survival and distribution of species that overwinter beneath the snow. Amphibians are a particularly vulnerable group to winter climate change because of the tight coupling between their body temperature and metabolic rate. Here, we used a mechanistic microclimate model coupled to an animal biophysics model to predict the spatially explicit effects of future climate change on the wintering energetics of a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus), across its distributional range in the eastern United States. Our below-the-snow microclimate simulations were driven by dynamically downscaled climate projections from a regional climate model coupled to a one-dimensional model of the Laurentian Great Lakes. We found that warming soil temperatures and decreasing winter length have opposing effects on Wood Frog winter energy requirements, leading to geographically heterogeneous implications for Wood Frogs. While energy expenditures and peak body ice content were predicted to decline in Wood Frogs across most of our study region, we identified an area of heightened energetic risk in the northwestern part of the Great Lakes region where energy requirements were predicted to increase. Because Wood Frogs rely on body stores acquired in fall to fuel winter survival and spring breeding, increased winter energy requirements have the potential to impact local survival and reproduction. Given the geographically variable and intertwined drivers of future under-snow conditions (e.g., declining snow depths, rising air temperatures, shortening winters), spatially explicit assessments of species energetics and risk will be important to understanding the vulnerability of subnivium-adapted species.


Assuntos
Ecossistema , Neve , Animais , Mudança Climática , Great Lakes Region , Ranidae , Estações do Ano
2.
Proc Biol Sci ; 283(1827): 20153104, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030410

RESUMO

The effects of climate change on biodiversity have emerged as a dominant theme in conservation biology, possibly eclipsing concern over habitat loss in recent years. The extent to which this shifting focus has tracked the most eminent threats to biodiversity is not well documented. We investigated the mechanisms driving shifts in the southern range boundary of a forest and snow cover specialist, the snowshoe hare, to explore how its range boundary has responded to shifting rates of climate and land cover change over time. We found that although both forest and snow cover contributed to the historical range boundary, the current duration of snow cover best explains the most recent northward shift, while forest cover has declined in relative importance. In this respect, the southern range boundary of snowshoe hares has mirrored the focus of conservation research; first habitat loss and fragmentation was the stronger environmental constraint, but climate change has now become the main threat. Projections of future range shifts show that climate change, and associated snow cover loss, will continue to be the major driver of this species' range loss into the future.


Assuntos
Distribuição Animal , Mudança Climática , Florestas , Lebres/fisiologia , Animais , Neve , Wisconsin
3.
Ecol Appl ; 22(4): 1365-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22827141

RESUMO

This study focuses on potential impacts of 21st century climate change on vegetation in the Southwest United States, based on debiased and interpolated climate projections from 17 global climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Among these models a warming trend is universal, but projected changes in precipitation vary in sign and magnitude. Two independent methods are applied: a dynamic global vegetation model to assess changes in plant functional types and bioclimatic envelope modeling to assess changes in individual tree and shrub species and biodiversity. The former approach investigates broad responses of plant functional types to climate change, while considering competition, disturbances, and carbon fertilization, while the latter approach focuses on the response of individual plant species, and net biodiversity, to climate change. The dynamic model simulates a region-wide reduction in vegetation cover during the 21st century, with a partial replacement of evergreen trees with grasses in the mountains of Colorado and Utah, except at the highest elevations, where tree cover increases. Across southern Arizona, central New Mexico, and eastern Colorado, grass cover declines, in some cases abruptly. Due to the prevalent warming trend among all 17 climate models, vegetation cover declines in the 21st century, with the greatest vegetation losses associated with models that project a drying trend. The inclusion of the carbon fertilization effect largely ameliorates the projected vegetation loss. Based on bioclimatic envelope modeling for the 21st century, the number of tree and shrub species that are expected to experience robust declines in range likely outweighs the number of species that are expected to expand in range. Dramatic shifts in plant species richness are projected, with declines in the high-elevation evergreen forests, increases in the eastern New Mexico prairies, and a northward shift of the Sonoran Desert biodiversity maximum.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Modelos Biológicos , Desenvolvimento Vegetal , Plantas/classificação , Ecossistema , Dinâmica Populacional , Sudoeste dos Estados Unidos , Fatores de Tempo
5.
Nat Commun ; 11(1): 2893, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518232

RESUMO

Africa contains some of the most vulnerable ecosystems to fires. Successful seasonal prediction of fire activity over these fire-prone regions remains a challenge and relies heavily on in-depth understanding of various driving mechanisms underlying fire evolution. Here, we assess the seasonal environmental drivers and predictability of African fire using the analytical framework of Stepwise Generalized Equilibrium Feedback Assessment (SGEFA) and machine learning techniques (MLTs). The impacts of sea-surface temperature, soil moisture, and leaf area index are quantified and found to dominate the fire seasonal variability by regulating regional burning condition and fuel supply. Compared with previously-identified atmospheric and socioeconomic predictors, these slowly evolving oceanic and terrestrial predictors are further identified to determine the seasonal predictability of fire activity in Africa. Our combined SGEFA-MLT approach achieves skillful prediction of African fire one month in advance and can be generalized to provide seasonal estimates of regional and global fire risk.

6.
Sci Data ; 4: 170053, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440790

RESUMO

Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. In addition to lake-specific daily simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We include all supporting lake-specific model parameters, meteorological drivers, and archived code for the model and derived metric calculations. This unique dataset offers landscape-level insight into the impact of climate change on lakes.

7.
Nat Commun ; 8(1): 1873, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29187740

RESUMO

Classic, model-based theory of land-atmosphere interactions across the Sahel promote positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback nor its underlying albedo mechanism has been convincingly demonstrated using observational data. Here, we present observational evidence for the region's proposed positive vegetation-rainfall feedback on the seasonal to interannual time scale, and find that it is associated with a moisture recycling mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely sensed vegetation greenness across the Sahel during the late and post-monsoon periods favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indicative of amplified moisture recycling. The identified modest low-level cooling and anomalous atmospheric subsidence in response to positive vegetation greenness anomalies are counter to the responses expected through the classic vegetation-albedo feedback mechanism. The observational analysis further reveals enhanced dust emissions in response to diminished Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback.

8.
PLoS One ; 11(12): e0167506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959911

RESUMO

Projected changes in the relative abundance and timing of autumn-winter migration are assessed for seven dabbling duck species across the Mississippi and Atlantic Flyways for the mid- and late 21st century. Species-specific observed relationships are established between cumulative weather severity in autumn-winter and duck population rate of change. Dynamically downscaled projections of weather severity are developed using a high-resolution regional climate model, interactively coupled to a one-dimensional lake model to represent the Great Lakes and associated lake-effect snowfall. Based on the observed relationships and downscaled climate projections of rising air temperatures and reduced snow cover, delayed autumn-winter migration is expected for all species, with the least delays for the Northern Pintail and the greatest delays for the Mallard. Indeed, the Mallard, the most common and widespread duck in North America, may overwinter in the Great Lakes region by the late 21st century. This highlights the importance of protecting and restoring wetlands across the mid-latitudes of North America, including the Great Lakes Basin, because dabbling ducks are likely to spend more time there, which would impact existing wetlands through increased foraging pressure. Furthermore, inconsistency in the timing and intensity of the traditional autumn-winter migration of dabbling ducks in the Mississippi and Atlantic Flyways could have social and economic consequences to communities to the south, where hunting and birdwatching would be affected.


Assuntos
Distribuição Animal , Migração Animal , Patos/fisiologia , Estações do Ano , Tempo (Meteorologia) , Animais , Oceano Atlântico , Great Lakes Region , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA