RESUMO
Regulator of G protein signaling 5 (RGS5) is a GTPase activator for heterotrimeric G-protein α-subunits, shown to be a marker of pericytes. Bone marrow stromal cell population (BMSCs) is heterogeneous. Populations of mesenchymal progenitors, cells supportive of hematopoiesis, and stromal cells regulating bone remodeling have been recently identified. Periosteal and bone marrow mesenchymal stem cells (MSCs) are participating in fracture healing, but it is difficult to distinguish the source of cells within the callus. Considering that perivascular cells exert osteoprogenitor potential, we generated an RGS5 transgenic mouse model (Rgs5-CreER) which when crossed with Ai9 reporter animals (Rgs5/Tomato), is suitable for lineage tracing during growth and post-injury. Flow cytometry analysis and histology confirmed the presence of Rgs5/Tomato+ cells within CD31+ endothelial, CD45+ hematopoietic, and CD31-CD45- mesenchymal/perivascular cells. A tamoxifen chase showed expansion of Rgs5/Tomato+ cells expressing osterix within the trabeculae positioned between mineralized matrix and vasculature. Long-term chase showed proportion of Rgs5/Tomato+ cells contributes to mature osteoblasts expressing osteocalcin. Following femoral fracture, Rgs5/Tomato+ cells are observed around newly formed bone within the BM cavity and expressed osterix and osteocalcin, while contribution within periosteum was low and limited to fibroblastic callus with very few positive chondrocytes. In addition, BM injury model confirmed that RGS5-Cre labels population of BMSCs expands during injury and participates in osteogenesis. Under homeostatic conditions, lineage-traced RGS5 cells within the trabecular area demonstrate osteoprogenitor capacity that in an injury model contributes to new bone formation primarily within the BM niche.
Assuntos
Calo Ósseo , Proteínas RGS , Camundongos , Animais , Osteocalcina/metabolismo , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Osteogênese , Consolidação da Fratura/fisiologia , Condrócitos/metabolismo , Camundongos Transgênicos , Osteoblastos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismoRESUMO
Osteoclasts (OC) originate from either bone marrow (BM)-resident or circulating myeloid OC progenitors (OCP) expressing the receptor CX3CR1. Multiple lines of evidence argue that OCP in homeostasis and inflammation differ. We investigated the relative contributions of BM-resident and circulating OCP to osteoclastogenesis during homeostasis and fracture repair. Using CX3CR1-EGFP/TRAP tdTomato mice, we found CX3CR1 expression in mononuclear cells, but not in multinucleated TRAP+ OC. However, CX3CR1-expressing cells generated TRAP+ OC on bone within 5 d in CX3CR1CreERT2/Ai14 tdTomato reporter mice. To define the role that circulating cells play in osteoclastogenesis during homeostasis, we parabiosed TRAP tdTomato mice (CD45.2) on a C57BL/6 background with wild-type (WT) mice (CD45.1). Flow cytometry (CD45.1/45.2) demonstrated abundant blood cell mixing between parabionts after 2 wk. At 4 wk, there were numerous tdTomato+ OC in the femurs of TRAP tdTomato mice but almost none in WT mice. Similarly, cultured BM stimulated to form OC demonstrated multiple fluorescent OC in cell cultures from TRAP tdTomato mice, but not from WT mice. Finally, flow cytometry confirmed low-level engraftment of BM cells between parabionts but significant engraftment in the spleens. In contrast, during fracture repair, we found that circulating CX3CR1+ cells migrated to bone, lost expression of CX3CR1, and became OC. These data demonstrate that OCP, but not mature OC, express CX3CR1 during both homeostasis and fracture repair. We conclude that, in homeostasis mature OC derive predominantly from BM-resident OCP, whereas during fracture repair, circulating CX3CR1+ cells can become OC.
RESUMO
Bone remodeling and regeneration are dependent on resident stem/progenitor cells with the ability to replenish mature osteoblasts and repair the skeleton. Using lineage tracing approaches, we identified a population of Dmp1+ cells that reside within cortical bone and are distinct from osteocytes. Our aims were to characterize this stromal population of transcortical perivascular cells (TPCs) in their resident niche and evaluate their osteogenic potential. To distinguish this population from osteoblasts/osteocytes, we crossed mice containing inducible DMP1CreERT2/Ai9 Tomato reporter (iDMP/T) with Col2.3GFP reporter (ColGFP), a marker of osteoblasts and osteocytes. We observed iDMP/T+;ColGFP- TPCs within cortical bone following tamoxifen injection. These cells were perivascular and located within transcortical channels. Ex vivo bone outgrowth cultures showed TPCs migrated out of the channels onto the plate and expressed stem cell markers such as Sca1, platelet derived growth factor receptor beta (PDGFRß), and leptin receptor. In a cortical bone transplantation model, TPCs migrate from their vascular niche within cortical bone and contribute to new osteoblast formation and bone tube closure. Treatment with intermittent parathyroid hormone increased TPC number and differentiation. TPCs were unable to differentiate into adipocytes in the presence of rosiglitazone in vitro or in vivo. Altogether, we have identified and characterized a novel stromal lineage-restricted osteoprogenitor that is associated with transcortical vessels of long bones. Functionally, we have demonstrated that this population can migrate out of cortical bone channels, expand, and differentiate into osteoblasts, therefore serving as a source of progenitors contributing to new bone formation.
Assuntos
Osso e Ossos/fisiopatologia , Osteoblastos/metabolismo , Osteócitos/metabolismo , Animais , Diferenciação Celular , Humanos , CamundongosRESUMO
Osteogenesis imperfecta (OI) is a genetic disorder most commonly caused by mutations associated with type I collagen, resulting in a defective collagen bone matrix. Current treatments for OI focus on pharmaceutical strategies to increase the amount of defective bone matrix, but do not address the underlying collagen defect. Introducing healthy donor stem cells that differentiate into osteoblasts producing normal collagen in OI patients has the potential to increase bone mass and correct the mutant collagen matrix. In this study, donor bone marrow stromal cells (BMSCs, also known as bone marrow mesenchymal stem cells) expressing both αSMACreERT2/Ai9 progenitor reporter and osteoblast reporter Col2.3GFP were locally transplanted into the femur of OI murine (OIM) mice. One month post-transplantation, 18% of the endosteal surface was lined by donor Col2.3GFP expressing osteoblasts indicating robust engraftment. Long-term engraftment in the marrow was observed 3 and 6 months post-transplantation. The presence of Col1a2-expressing donor cell-derived cortical bone matrix was detected in transplanted OIM femurs. Local transplantation of BMSCs increased cortical thickness (+12%), the polar moment of inertia (+14%), bone strength (+30%), and stiffness (+30%) 3 months post-transplantation. Engrafted cells expressed progenitor markers CD51 and Sca-1 up to 3 months post-transplantation. Most importantly, 3 months post-transplantation donor cells maintained the ability to differentiate into Col2.3GFP+ osteoblasts in vitro, and in vivo following secondary transplantation into OIM animals. Locally transplanted BMSCs can improve cortical structure and strength, and persist as continued source of osteoblast progenitors in the OIM mouse for at least 6 months.
Assuntos
Osso e Ossos/metabolismo , Osteogênese Imperfeita/terapia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Animais , Osso e Ossos/citologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Células-Tronco/citologiaRESUMO
Current treatments of large bone defects are based on autologous or allogenic bone transplantation. Human amniotic fluid stem cells (hAFSCs) were evaluated for their potential in bone regenerative medicine. In this study, hAFSCs were transduced with lentiviral vector harboring red fluorescent protein to investigate their role in the regeneration of critical-size bone defects in calvarial mouse model. To distinguish donor versus recipient cells, a transgenic mouse model carrying GFP fluorescent reporter was used as recipient to follow the fate of hAFSCs transplanted in vivo into Healos® scaffold. Our results showed that transduced hAFSCs can be tracked in vivo directly at the site of transplantation. The presence of GFP positive cells in the scaffold at 3 and 6 weeks after transplantation indicates that donor hAFSCs can recruit host cells during the repair process. These observations help clarify the role of hAFSCs in bone tissue repair.
Assuntos
Líquido Amniótico/citologia , Regeneração Óssea , Osteogênese , Crânio/cirurgia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Comunicação Celular , Linhagem da Célula , Movimento Celular , Rastreamento de Células , Células Cultivadas , Técnicas de Cocultura , Feminino , Genes Reporter , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Modelos Animais , Fenótipo , Gravidez , Transdução de Sinais , Crânio/metabolismo , Crânio/patologia , Crânio/fisiopatologia , Fatores de TempoRESUMO
BACKGROUND/AIMS: Tff3 protein plays a well recognized role in the protection of gastrointestinal mucosa. The role of Tff3 in the metabolism is a new aspect of its function. Tff3 is one of the most affected liver genes in early diabetes and fatty liver rodent models. The aim of this study was to investigate the effect of Tff3 deficiency on lipid and carbohydrate metabolism and on markers of oxidative stress that accompanies metabolic deregulation. METHODS: Specific markers of health status were determined in sera of Tff3 deficient mice, including glucose level, functional glucose and insulin tolerance. Composition of fatty acids (FAs) was determined in liver and blood serum by using gas chromatography. Oxidative stress parameters were determined: lipid peroxidation level via determination of lipid hydroperoxide and thiobarbituric acid reactive substances (TBARS), antioxidative capacity (FRAP) and specific antioxidative enzyme activity. The expression of several genes and proteins related to the metabolism of lipids, carbohydrates and oxidative stress (CAT, GPx1, SOD2, PPARα, PPARγ, PPARδ, HNF4α and SIRT1) was determined. RESULTS: Tff3 deficient mice showed better glucose utilization in the glucose and insulin test. Liver lipid metabolism is affected and increased formation of small lipid vesicles is noticed. Formation of lipid droplets is not accompanied by increased liver oxidative stress, although expression/activity of monitored enzymes is deregulated when compared with wild type mice. Tff3 deficient mice exhibit reduced expression of metabolism relevant SIRT1 and PPARγ genes. CONCLUSION: Tff3 deficiency affects the profile and accumulation of FAs in the liver, with no obvious oxidative stress increase, although expression/activity of monitored enzymes is changed as well as the level of SIRT1 and PPARγ protein. Considering the strong downregulation of liver Tff3 in diabetic/obese mice, presence in circulation and regulation by food/insulin, Tff3 is an interesting novel candidate in metabolism relevant conditions.
Assuntos
Metabolismo dos Lipídeos , Fígado/metabolismo , Fator Trefoil-3/genética , Animais , Cromatografia Gasosa , Ácidos Graxos/sangue , Teste de Tolerância a Glucose , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Insulina/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , PPAR gama/genética , PPAR gama/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator Trefoil-3/deficiência , Glutationa Peroxidase GPX1RESUMO
NEW FINDINGS: What is the central question of this study? Is there a beneficial effect and what are the mechanisms of acute and multiple hyperbaric oxygenation (HBO2 ) exposures on the outcome of cerebral tissue injury induced by a transient middle cerebral artery occlusion model in diabetic female rats? Are 20-hydroxyeicosatetreanoic acid and epoxyeicosatrienoic acids involved? What is the main finding and its importance? Equal reduction of cortical and total infarct size in rats treated with HBO2 and HET0016 (20-hydroxyeicosatetreanoic acid production inhibitor) and significant mRNA upregulation of epoxyeicosatrienoic acid-producing enzymes (Cyp2J3 and Cyp2C11) in treated groups suggest that HBO2 and HET0016 are highly effective stroke treatments and that cytochrome P450 metabolites are involved in this therapeutic effect. We evaluated the effects of acute and repetitive hyperbaric oxygenation (HBO2 ), 20-hydroxyeicosatetreanoic acid (20-HETE) inhibition by N-hydroxy-N'-(4-butyl-2methylphenyl)-formamidine (HET0016) and their combination on experimental stroke outcomes. Streptozotocin-induced type 1 diabetic Sprague-Dawley female rats (n = 42; n = 7 per group), were subjected to 30 min of transient middle cerebral artery occlusion (t-MCAO)-reperfusion and divided into the following groups: (1) control group, without treatment; and groups exposed to: (2) HBO2 ; (3) multiple HBO2 (HBO2 immediately and second exposure 12 h after t-MCAO); (4) HET0016 pretreatment (1 mg kg-1 , 3 days before t-MCAO) combined with HBO2 after t-MCAO; (5) HET0016 treatment (1 h before, during and for 6 h after t-MCAO); and (6) HET0016 treatment followed by HBO2 after t-MCAO. Messenger RNA expression of CYP2J3, CYP2C11, CYP4A1, endothelial nitric oxide synthase and epoxide hydrolase 2 was determined by real-time qPCR. Cortical infarct size and total infarct size were equally and significantly reduced in HBO2 - and HET0016-treated rats. Combined treatment with HET0016 and HBO2 provided no significant additive effect compared with HET0016 treatment only. Messenger RNA of Cyp2J3 was significantly increased in all study groups, and mRNA of Cyp2C11 was significantly increased in the multiple HBO2 group and the HET0016 treatment followed by HBO2 group, compared with the control group. Expression of endothelial nitric oxide synthase was significantly increased after HBO2 treatments, and expression of epoxide hydrolase 2 was increased in all groups compared with the control group. In diabetic female Sprague-Dawley rats, HBO2 and HET0016 are highly effective stroke treatments, suggesting the involvement of cytochrome P450 metabolites and the NO pathway in this therapeutic effect.
Assuntos
Amidinas/farmacologia , Encéfalo/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Oxigenoterapia Hiperbárica , Infarto da Artéria Cerebral Média/terapia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Terapia Combinada , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Esteroide 16-alfa-Hidroxilase/genética , Esteroide 16-alfa-Hidroxilase/metabolismo , Fatores de TempoRESUMO
KEY POINTS: Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. ABSTRACT: The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values.
Assuntos
Artéria Cerebral Média/fisiologia , Estresse Oxidativo , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Catalase/metabolismo , Dilatação , Endotélio Vascular/fisiologia , Glutationa Peroxidase/metabolismo , Leucócitos/metabolismo , Masculino , Artéria Cerebral Média/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismoRESUMO
Reactive oxygen species (ROS) and nitrogen species have an indispensable role in regulating cell signalling pathways, including transcriptional control via hypoxia inducible factor-1α (HIF-1α). Hyperbaric oxygenation treatment (HBO2) increases tissue oxygen content and leads to enhanced ROS production. In the present study DSS-induced colitis has been employed in BALB/c mice as an experimental model of gut mucosa inflammation to investigate the effects of HBO2 on HIF-1α, antioxidative enzyme, and proinflammatory cytokine genes during the colonic inflammation. Here we report that HBO2 significantly reduces severity of DSS-induced colitis, as evidenced by the clinical features, histological assessment, impaired immune cell expansion and mobilization, and reversal of IL-1ß, IL-2, and IL-6 gene expression. Gene expression and antioxidative enzyme activity were changed by the HBO2 and the inflammatory microenvironment in the gut mucosa. Strong correlation of HIF-1α mRNA level to GPx1, SOD1, and IL-6 mRNA expression suggests involvement of HIF-1α in transcriptional regulation of these genes during colonic inflammation and HBO2. This is further confirmed by a strong correlation of HIF-1α with known target genes VEGF and PGK1. Results demonstrate that HBO2 has an anti-inflammatory effect in DSS-induced colitis in mice, and this effect is at least partly dependent on expression of HIF-1α and antioxidative genes.
RESUMO
AIM: To determine optimal duration of transient middle cerebral artery occlusion (t-MCAO) for a stroke model in female diabetic Sprague-Dawley (SD) rats. METHODS: Streptozotocin-induced type-1 diabetic SD female rats (n = 25, 12 weeks old, five groups; n = 5 per group) were subjected to different duration of t-MCAO (20, 30, 45, 60 and 90 minutes) followed by reperfusion. A control group of rats without diabetes (n = 5) was subjected to 30 minutes of t-MCAO followed by reperfusion. Twenty-four hours after reperfusion, infarct volumes were evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining. RESULTS: Intra-ischaemic reductions of regional cerebral blood flow (rCBF) were similar in all groups (68-75% of baseline values). Reperfusion was significantly impaired in the 90-minute ischaemia group (56-62% vs 80-125% in other groups). Twenty minutes of t-MCAO induced a small infarct (3 ± 5% of ischaemic hemisphere). Thirty minutes of ischaemia produced a significantly larger infarct (46 ± 6%). In the 45 and 60 minute groups, ischaemia infarct was 52 ± 5% and 59 ± 3% of the ischaemic hemisphere, respectively. Ischaemia of 90' led to a massive stroke (89 ± 6% of ischaemic hemisphere encompassing the whole striatum (22 ± 3%) and almost the whole MCA irrigated cortex area (67 ± 6%)). Thirty minutes of t-MCAO did not produce stroke in the control group. CONCLUSION: The diabetic rat stroke model should be different from the non-diabetic, because female type-1 diabetic SD rats are highly sensitive to brain ischaemia and it is necessary to significantly shorten the duration of t-MCAO, optimally to 30 minutes.
Assuntos
Circulação Cerebrovascular/fisiologia , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Animais , Glicemia/fisiologia , Infarto Cerebral/diagnóstico , Infarto Cerebral/etiologia , Jejum , Feminino , Infarto da Artéria Cerebral Média/diagnóstico , Fluxometria por Laser-Doppler , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Fatores de TempoRESUMO
The effects of hyperbaric oxygenation (HBO2) on acetylcholine-induced vasorelaxation (AChIR) were evaluated in male Sprague-Dawley (SD) rats randomized into four groups: healthy controls (Ctrl), diabetic rats (DM), and control and diabetic rats that underwent hyperbaric oxygenation (Ctrl+HBO2 and DM+HBO2). AChIR was measured in aortic rings, with L-NAME, indomethacin, or MS-PPOH and a combination of inhibitors. mRNA expression of eNOS, iNOS, COX-1 and COX-2 was assessed by qPCR, and protein expression of CYP4A(1-3) by Western blot. Plasma antioxidative capacity and systemic oxidative stress were determined with the ferric reducing ability of plasma (FRAP) and thiobarbituric acid-reactive substances (TBARS) assays, respectively. AChIR was preserved in all groups of rats, but mediated with different mechanisms. In all experimental groups of rats, AChIR was mediated mainly by NO, with the contribution of CYP450 vasodilator metabolites. This effect was the most prominent in the DM+HBO2 group of rats. The TBARS was significantly higher in both DM and DM+HBO2 groups compared to respective controls. eNOS expression was upregulated in the DM+HBO2 group compared to other groups, COX-1 expression was upregulated in the DM+HBO2 group compared to the control. CYP450-4A1 / A2/A3protein expression was significantly higher expressed in both hyperbaric groups compared to their respective controls. In conclusion, HBO2 affected all three vasodilator pathways and shifted AChIR to CYP450 enzymes pathway.
Assuntos
Acetilcolina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Oxigenoterapia Hiperbárica , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Acetilcolina/antagonistas & inibidores , Amidas/farmacologia , Animais , Antioxidantes/análise , Aorta/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450 , Diabetes Mellitus Experimental/terapia , Inibidores Enzimáticos/farmacologia , Indometacina/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vasodilatação/fisiologia , Vasodilatadores/antagonistas & inibidoresRESUMO
We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.
Assuntos
Células Endoteliais , Consolidação da Fratura , Proteína Jagged-1 , Periósteo , Transdução de Sinais , Animais , Camundongos , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Células Endoteliais/metabolismo , Periósteo/metabolismo , Periósteo/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células-Tronco Mesenquimais/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Osteogênese/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Masculino , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genéticaRESUMO
Aggrecan (Acan) is a large proteoglycan molecule constituting the extracellular matrix of cartilage, secreted by chondrocytes. To specifically target the chondrocyte lineage, researchers have widely used the AcanCreER mouse model. Evaluation of specificity and efficiency of recombination, requires Cre animals to be crossed with reporter mice. In order to accurately interpret data from Cre models, it is imperative to consider A) the amount of recombination occurring in cells/tissues that are not intended for targeting (i.e., non-specific expression), B) the efficiency of Cre recombination, which can depend on dose and duration of tamoxifen treatment, and C) the activation of CreER without tamoxifen induction, known as "Cre leakage." Using a highly sensitive reporter mouse (Ai9, tdTomato), we performed a comprehensive analysis of the AcanCreER system. Surprisingly, we observed expression in cells within the periosteum. These cells expand at a stage when chondrocytes are not yet present within the forming callus tissue (Acan/Ai9+ cells). In pulse-chase experiments, we confirmed that fibroblastic Acan/Ai9+ cells within the periosteum can directly give rise to osteoblasts. Our results show that Acan/Ai9+ is not specific for the chondrocyte lineage in the fracture callus or with the tibial holes. The expression of AcanCreER in periosteal progenitor cells complicates the interpretation of studies evaluating the transition of chondrocytes to osteoblasts (termed transdifferentiation). Awareness of these issues and the limitations of the system will lead to better data interpretation.
Assuntos
Condrócitos , Fraturas Ósseas , Camundongos , Animais , Condrócitos/metabolismo , Camundongos Transgênicos , Calo Ósseo , Fraturas Ósseas/metabolismo , Tamoxifeno/farmacologiaRESUMO
Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by sensory nerves and functions as a pain sensor. It acts by binding to the calcitonin-like receptor (CLR, protein; Calcrl, gene). CGRP inhibition has been recently introduced as therapeutic treatment of migraine-associated pain. Previous studies have shown that CGRP stimulates bone formation. The aim of our study is to determine whether the inhibition of CGRP signaling negatively impacted fracture healing. Using α-smooth muscle actin (αSMA) Cre animals crossed with Ai9 reporter mice, we showed that CGRP-expressing nerves are near αSMA + cells in the periosteum. In vitro experiments revealed that periosteal cells express Calcrl and receptor activity modifying protein 1; and CGRP stimulation increased periosteal cell proliferation. Using a tamoxifen-inducible model αSMACre/CLRfl/fl , we targeted the deletion of CLR to periosteal progenitor cells and examined fracture healing. Microcomputed tomography of fractured femurs showed a reduction in bone mass in αSMACre+/CLRfl/fl female mice relative to controls and callus volume in males. Pharmacological CGRP-CLR inhibition was achieved by subcutaneous delivery of customized pellets with small molecule inhibitor olcegepant (BIBN-4096) at a dose of 10 µg/day. BIBN-4096-treated C57BL/6J mice had a higher latency toward thermal nociception than placebo-treated mice, indicating impaired sensory function through CGRP inhibition. CGRP inhibition also resulted in reduced callus volume, bone mass, and bone strength compared to placebo controls. These results indicate that inhibiting CGRP by deleting CLR or by using BIBN-4096, contributes to delayed bone healing.
Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Calcitonina , Masculino , Camundongos , Feminino , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Consolidação da Fratura , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Dor , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismoRESUMO
Bone regeneration depends on a pool of bone/cartilage stem/progenitor cells and signaling mechanisms regulating their differentiation. Using in vitro approach, we have shown that PDGF signaling through PDGFRß inhibits BMP2-induced osteogenesis, and significantly attenuates expression of BMP2 target genes. We evaluated outcomes of treatment with two anabolic agents, PDGF and BMP2 using different bone healing models. Targeted deletion of PDGFRß in αSMA osteoprogenitors, led to increased callus bone mass, resulting in improved biomechanical properties of fractures. In critical size bone defects BMP2 treatment increased proportion of osteoprogenitors, while the combined treatment of PDGF BB with BMP2 decreased progenitor number at the injury site. BMP2 treatment induced significant bone formation and increased number of osteoblasts, while in contrast combined treatment with PDGF BB decreased osteoblast numbers. This is in vivo study showing that PDGF inhibits BMP2-induced osteogenesis, but inhibiting PDGF signaling early in healing process does not improve BMP2-induced bone healing.
RESUMO
Although bone tissue allografts and autografts aremoften used as a regenerative tissue during the bone healing, their availability, donor site morbidity, and immune response to grafted tissue are limiting factors their more common usage. Tissue engineered implants, such as acellular or cellular polymeric structures, can be an alternative solution. A variety of scaffold fabrication techniques including electrospinning, particulate leaching, particle sintering, and more recently 3D printing have been used to create scaffolds with interconnected pores and mechanical properties for tissue regeneration. Simply combining particle sintering and molecular self-assembly to create porous microstructures with imbued nanofibers to produce micronanostructures for tissue regeneration applications. Natural polymers like polysaccharides, proteins and peptides of plant or animal origin have gained significant attention due to their assured biocompatibility in tissue regeneration. However, majority of these polymers are water soluble and structures derived from them are in the form of hydrogels and require additional stabilization via cross-linking. For bone healing applications scaffolds are required to be strong, and support attachment, proliferation and differentiation of osteoprogenitors into osteoblasts. Our ongoing work utilizes plant polysaccharide cellulose derivatives and collagen to create mechanically stable and bioactive micronanostructured scaffold for bone tissue engineering. Scaffold microstructure is essentially solvent sintered cellulose acetate (CA) microspheres in the form of a negative template for trabecular bone with defined pore and mechanical properties. Collagen nanostructures are imbued into the 3D environment of CA scaffolds using collagen molecular self-assembly principles. The resultant CA-collagen micronanostructures provide the benefits of combined polymers and serve as an alternative material platform to many FDA approved polyesters. Our ongoing studies and published work confirm improved osteoprogenitor adhesion, proliferation, migration, differentiation, extracellular matrix (ECM) secretion in promoting bone healing. In this chapter we will provide a detailed protocol on the creation of micronanostructured CA-collagen scaffolds and their characterization for bone tissue engineering using human mesenchymal stem cells.
Assuntos
Nanofibras , Engenharia Tecidual , Animais , Regeneração Óssea , Osso e Ossos , Nanofibras/química , Polímeros/química , Alicerces Teciduais/químicaRESUMO
Inadequate Pap smear by definition is a specimen in which detection of cervical epithelial abnormality is impossible or uncertain. This causes poorer detection of intraepithelial lesions of a mild and more severe grade, including the possible false-negative diagnosis. Sample adequacy is most crucial in the evaluation of the finding, alerting the gynecologist to the limitations of the finding, its possible inaccuracy, and need to repeat the examination in order to obtain as precise results as possible. The aim of the study was to establish the frequency and reasons of unsatisfactory cervicovaginal smear samples in the course of one year, during which 1594 of 12,242 conventionally obtained cervical samples were sorted out as inadequate. These were reassessed with respect to their adequacy. Eight percent of the smears in which the evaluation of cell abnormality failed due to sample inadequacy were identified and these smears were repeated and analyzed for adequacy and presence of abnormality. The most common reasons included insufficient endocervical epithelial cells, excessive smear thickness, cells obscured with numerous inflammatory elements and erythrocytes, and sample inadequacy due to the presence of foreign material, poor fixation or staining. Inadequate equipment, insufficient material for cytologic analysis, and poor preparation technique may lead to failure to observe abnormality and errors in microscopic analysis. This implies each team member's responsibility for the accuracy of the result as well for the assurance of specimen adequacy. Reduction in the frequency of the reasons mentioned above is possible if internal control, performance quality monitoring and continuing education of each team member are conducted on a regular basis. The necessity to repeat sampling adds to the cost of health care with no considerable increase in the detection rate of epithelial abnormalities, inadequate specimens being the most common cause of false-negative cytologic findings.
Assuntos
Teste de Papanicolaou , Esfregaço Vaginal/normas , Reações Falso-Negativas , Feminino , Humanos , Manejo de Espécimes , Esfregaço Vaginal/estatística & dados numéricosRESUMO
The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched with progenitor cells, including Sca1+ cells, fibroblast colony-forming units, and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that alpha smooth muscle actin (αSMA) identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched with skeletal progenitor cells, and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.
Assuntos
Consolidação da Fratura , Osteogênese , Periósteo/fisiologia , Animais , Feminino , Masculino , CamundongosRESUMO
Osteochondroprogenitors are crucial for embryonic bone development and postnatal processes such as bone repair in response to fracture injury, and their dysfunction may contribute to insufficient repair of structural damage in inflammatory arthritides. In the fracture healing, the early inflammatory phase is crucial for normal callus development and new bone formation. This process involves a complex interplay of many molecules and cell types, responsible for recruitment, expansion and differentiation of osteochondroprogenitor populations. In inflammatory arthritides, inflammation induces bone resorption and causes insufficient bone formation, which leads to local and systemic bone loss. While bone loss is a predominant feature in rheumatoid arthritis, inflammation also induces pathologic bone formation at enthesial sites in seronegative spondyloarthropathies. Bone morphogenetic proteins (BMP) are involved in cell proliferation, differentiation and apoptosis, and have fundamental roles in maintenance of postnatal bone homeostasis. They are crucial regulators of the osteochondroprogenitor pool and drive their proliferation, differentiation, and lifespan during bone regeneration. In this review, we summarize the effects of inflammation on osteochondroprogenitor populations during fracture repair and in inflammatory arthritides, with special focus on inflammation-mediated modulation of BMP signaling. We also present data in which we describe a population of murine synovial osteochondroprogenitor cells, which are reduced in arthritis, and characterize their expression of genes involved in regulation of bone homeostasis, emphasizing the up-regulation of BMP pathways in early progenitor subset. Based on the presented data, it may be concluded that during an inflammatory response, innate immune cells induce osteochondroprogenitors by providing signals for their recruitment, by producing BMPs and other osteogenic factors for paracrine effects, and by secreting inflammatory cytokines that may positively regulate osteogenic pathways. On the other hand, inflammatory cells may secrete cytokines that interfere with osteogenic pathways, proapoptotic factors that reduce the pool of osteochondroprogenitor cells, as well as BMP and Wnt antagonists. The net effect is strongly context-dependent and influenced by the local milieu of cells, cytokines, and growth factors. Further elucidation of the interplay between inflammatory signals and BMP-mediated bone formation may provide valuable tools for therapeutic targeting.
Assuntos
Proteínas Morfogenéticas Ósseas , Osteogênese , Animais , Proteína Morfogenética Óssea 2 , Calo Ósseo , Diferenciação Celular , Consolidação da Fratura , CamundongosRESUMO
Adding shape and interaction anisotropy to a colloidal particle offers exquisitely tunable routes to engineer a rich assortment of complex-architected structures. Inspired by the hierarchical self-assembly concept with block copolymers and DNA liquid crystals and exploiting the unique assembly properties of DNA, we report here the construction and self-assembly of DNA-based soft-patchy anisotropic particles with a high degree of modularity in the system's design. By programmable positioning of thermoresponsive polymeric patches on the backbone of a stiff DNA duplex with linear and star-shaped architecture, we reversibly drive the DNA from a disordered ensemble to a diverse array of long-range ordered multidimensional nanostructures with tunable lattice spacing, ranging from lamellar to bicontinuous double-gyroid and double-diamond cubic morphologies, through the alteration of temperature. Our results demonstrate that the proposed hierarchical self-assembly strategy can be applied to any kind of DNA nanoarchitecture, highlighting the design principles for integration of self-assembly concepts from the physics of liquid crystals, block copolymers, and patchy colloids into the continuously growing interdisciplinary research field of structural DNA nanotechnology.