RESUMO
Immune deregulation has a critical role in the pathogenesis of lower risk myelodysplastic syndromes (MDS). The cells of the macrophage/monocyte lineage have been reported to contribute to the inflammatory process in MDS through impaired phagocytosis of the apoptotic hemopoietic cells and abnormal production of cytokines. In the present study we assessed the number of peripheral blood (PB) monocyte subsets, namely the classical CD14bright/CD16-, intermediate CD14bright/CD16+ and non-classical CD14dim/CD16+ cells, in patients with lower risk (low/intermediate-I) MDS (n = 32). We also assessed the production of tumor necrosis factor (TNF)α by patient PB monocytes in response to immune stimulus as well as their transcriptome profile. Compared to age- and sex-matched healthy individuals (n = 19), MDS patients had significantly lower number of classical and increased number of intermediate monocytes. Patient intermediate monocytes displayed increased production of TNFα following stimulation with lipopolysaccharide, compared to healthy individuals. Transcriptional profiling comparison of CD16+ monocytes from patients and controls revealed 43 differentially expressed genes mostly associated with biological pathways/processes relevant to hemopoiesis, immune signaling and cell adhesion. These data provide evidence for the first-time that distinct monocyte subsets display abnormal quantitative and functional characteristics in lower risk MDS substantiating their role in the immune deregulation associated with the disease.
Assuntos
Receptores de Lipopolissacarídeos/análise , Monócitos/patologia , Síndromes Mielodisplásicas/patologia , Receptores de IgG/análise , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/etiologia , Fatores de Risco , Fator de Necrose Tumoral alfa/análiseRESUMO
The inflammatory cytokine stem cell factor (SCF, ligand of c-kit receptor) has been implicated as a pro-oncogenic driver and an adverse prognosticator in several human cancers. Increased SCF levels have recently been reported in a small series of patients with chronic lymphocytic leukemia (CLL), however its precise role in CLL pathophysiology remains elusive. In this study, CLL cells were found to express predominantly the membrane isoform of SCF, which is known to elicit a more robust activation of the c-kit receptor. SCF was significantly overexpressed in CLL cells compared to healthy tonsillar B cells and it correlated with adverse prognostic biomarkers, shorter time-to-first treatment and shorter overall survival. Activation of immune receptors and long-term cell-cell interactions with the mesenchymal stroma led to an elevation of SCF primarily in CLL cases with an adverse prognosis. Contrariwise, suppression of oxidative stress and the BTK inhibitor ibrutinib lowered SCF levels. Interestingly, SCF significantly correlated with mitochondrial dynamics and hypoxia-inducible factor-1a which have previously been linked with clinical aggressiveness in CLL. SCF was able to elicit direct biological effects in CLL cells, affecting redox homeostasis and cell proliferation. Overall, the aberrantly expressed SCF in CLL cells emerges as a key response regulator to microenvironmental stimuli while correlating with poor prognosis. On these grounds, specific targeting of this inflammatory molecule could serve as a novel therapeutic approach in CLL.
Assuntos
Leucemia Linfocítica Crônica de Células B , Fator de Células-Tronco , Proliferação de Células , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirazóis , PirimidinasRESUMO
Chronic lymphocytic leukemia (CLL) stereotyped subsets #6 and #8 include cases expressing unmutated B cell receptor immunoglobulin (BcR IG) (U-CLL). Subset #6 (IGHV1-69/IGKV3-20) is less aggressive compared to subset #8 (IGHV4-39/IGKV1(D)-39) which has the highest risk for Richter's transformation among all CLL. The underlying reasons for this divergent clinical behavior are not fully elucidated. To gain insight into this issue, here we focused on epigenomic signatures and their links with gene expression, particularly investigating genome-wide DNA methylation profiles in subsets #6 and #8 as well as other U-CLL cases not expressing stereotyped BcR IG. We found that subset #8 showed a distinctive DNA methylation profile compared to all other U-CLL cases, including subset #6. Integrated analysis of DNA methylation and gene expression revealed significant correlation for several genes, particularly highlighting a relevant role for the TP63 gene which was hypomethylated and overexpressed in subset #8. This observation was validated by quantitative PCR, which also revealed TP63 mRNA overexpression in additional nonsubset U-CLL cases. BcR stimulation had distinct effects on p63 protein expression, particularly leading to induction in subset #8, accompanied by increased CLL cell survival. This pro-survival effect was also supported by siRNA-mediated downregulation of p63 expression resulting in increased apoptosis. In conclusion, we report that DNA methylation profiles may vary even among CLL patients with similar somatic hypermutation status, supporting a compartmentalized approach to dissecting CLL biology. Furthermore, we highlight p63 as a novel prosurvival factor in CLL, thus identifying another piece of the complex puzzle of clinical aggressiveness.
Assuntos
Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Apoptose/genética , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo , Regulação para CimaRESUMO
In chronic lymphocytic leukemia (CLL) the interaction of leukemic cells with the microenvironment ultimately affects patient outcome. CLL cases can be divided in two subgroups with different clinical course based on the mutational status of the immunoglobulin heavy variable (IGHV) genes: mutated CLL (M-CLL) and unmutated CLL (U-CLL). Since in CLL, the differentiated relation of genes between the two subgroups is of greater importance than the individual gene behavior, this paper investigates the differences between the groups' gene interactions, by comparing their correlation structures. Fisher's test and Zou's confidence intervals are employed to detect differences of correlation coefficients. Afterwards, networks created by the genes participating in most differences are estimated with the use of structural equation models (SEM). The analysis is enhanced with graph modeling in order to visualize the between group differences in the gene structures of the two subgroups. The applied methodology revealed stronger correlations between genes in U-CLL patients, a finding in line with related biomedical literature. Using SEM for multigroup analysis, different gene structures between the two groups of patients were confirmed. The study of correlation structures can facilitate the detection of differential gene expression profiles in CLL subgroups, with potential applications in other diseases. Comparison of correlations can be very useful in understanding the complex internal structural differences which signify the variations of a disease.
Assuntos
Leucemia Linfocítica Crônica de Células B , Transcriptoma/genética , Algoritmos , Biomarcadores Tumorais/classificação , Biomarcadores Tumorais/genética , Biologia Computacional , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/classificação , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Mutação/genéticaRESUMO
Fludarabine, cyclophosphamide, and rituximab (FCR) is first-line treatment of medically fit chronic lymphocytic leukemia (CLL) patients; however, despite good response rates, many patients eventually relapse. Although recent high-throughput studies have identified novel recurrent genetic lesions in adverse prognostic CLL, the mechanisms leading to relapse after FCR therapy are not completely understood. To gain insight into this issue, we performed whole-exome sequencing of sequential samples from 41 CLL patients who were uniformly treated with FCR but relapsed after a median of 2 years. In addition to mutations with known adverse-prognostic impact (TP53, NOTCH1, ATM, SF3B1, NFKBIE, and BIRC3), a large proportion of cases (19.5%) harbored mutations in RPS15, a gene encoding a component of the 40S ribosomal subunit. Extended screening, totaling 1119 patients, supported a role for RPS15 mutations in aggressive CLL, with one-third of RPS15-mutant cases also carrying TP53 aberrations. In most cases, selection of dominant, relapse-specific subclones was observed over time. However, RPS15 mutations were clonal before treatment and remained stable at relapse. Notably, all RPS15 mutations represented somatic missense variants and resided within a 7 amino-acid, evolutionarily conserved region. We confirmed the recently postulated direct interaction between RPS15 and MDM2/MDMX and transient expression of mutant RPS15 revealed defective regulation of endogenous p53 compared with wild-type RPS15. In summary, we provide novel insights into the heterogeneous genetic landscape of CLL relapsing after FCR treatment and highlight a novel mechanism underlying clinical aggressiveness involving a mutated ribosomal protein, potentially representing an early genetic lesion in CLL pathobiology.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação de Sentido Incorreto , Recidiva Local de Neoplasia/genética , Proteínas Ribossômicas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Western Blotting , Separação Celular , Ciclofosfamida/administração & dosagem , Análise Mutacional de DNA , Exoma , Humanos , Imunoprecipitação , Estimativa de Kaplan-Meier , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/patologia , Recidiva Local de Neoplasia/patologia , Rituximab/administração & dosagem , Transfecção , Proteína Supressora de Tumor p53/genética , Vidarabina/administração & dosagem , Vidarabina/análogos & derivadosRESUMO
Chronic lymphocytic leukemia (CLL) patients assigned to stereotyped subset #4 (mutated IGHV4-34/IGKV2-30 BCR Ig) display a particularly indolent disease course. Immunogenetic studies of the clonotypic BCR Ig of CLL subset #4 suggested a resemblance with B cells rendered anergic through chronic autoantigenic stimulation. In this article, we provide experimental evidence that subset #4 CLL cells show low IgG levels, constitutive ERK1/2 activation, and fail to either release intracellular Ca(2+) or activate MAPK signaling after BCR cross-linking, thus displaying a signature of B cell anergy at both biochemical and functional levels. Interestingly, TLR1/2 triggering restored BCR functionality, likely breaching the anergic state, and this was accompanied by induction of the miR-17â¼92 cluster, whose members target critical BCR-associated molecules, including MAPKs. In conclusion, we demonstrate BCR anergy in CLL subset #4 and implicate TLR signaling and the miR-17â¼92 cluster in the regulation of the anergic state. This detailed signaling profiling of subset #4 has implications for advanced understanding of the complex regulation of intracellular signaling pathways in CLL, currently a major therapeutic target of the disease.
Assuntos
Linfócitos B/imunologia , Anergia Clonal , Leucemia Linfocítica Crônica de Células B/imunologia , MicroRNAs/genética , Receptores de Antígenos de Linfócitos B/imunologia , Receptor 2 Toll-Like/genética , Receptores Toll-Like/genética , Expressão Gênica , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/genética , Sistema de Sinalização das MAP Quinases , RNA Longo não CodificanteRESUMO
Malignancies of mature B cells are quite distinctive in originating from well-differentiated cells. Hence, it is not paradoxical that, similar to their normal counterparts, most mature B cell lymphoma subtypes are critically dependent on microenvironmental cues. Such external signals are sensed by various receptors present on the malignant cells, including the Toll-like receptors (TLRs), eliciting a range of cellular responses, including proliferation but also anergy and apoptosis, often with disease-specific patterns. Critically, the TLR signaling pathways are intertwined with other receptor pathways in malignant B cells, most notably the B-cell receptor pathway, and converge on NF-κB, leading to its activation. In the present review, we summarize the literature on TLR expression and functionality and its impact on NF-κB activation in different B cell malignancies including chronic lymphocytic leukemia where TLR9 induces activation, cell proliferation and chemoresistance in a proportion of patients while apoptosis can be induced in others. Additionally, we also discuss the therapeutic potential of strategies targeting TLR signaling in lymphoma.
Assuntos
Linfoma de Células B/metabolismo , NF-kappa B/metabolismo , Receptores Toll-Like/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Linfoma de Células B/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Polimorfismo Genético , Transdução de Sinais , Receptores Toll-Like/genéticaRESUMO
The nuclear factor-κB (NF-κB) pathway is constitutively activated in chronic lymphocytic leukemia (CLL) patients, and hence plays a major role in disease development and evolution. In contrast to many other mature B-cell lymphomas, only a few recurrently mutated genes involved in canonical or non-canonical NF-κB activation have been identified in CLL (i.e. BIRC3, MYD88 and NFKBIE mutations) and often at a low frequency. On the other hand, CLL B cells seem 'addicted' to the tumor microenvironment for their survival and proliferation, which is primarily mediated by interaction through a number of cell surface receptors, e.g. the B-cell receptor (BcR), Toll-like receptors and CD40, that in turn activate downstream NF-κB. The importance of cell-extrinsic triggering for CLL pathophysiology was recently also highlighted by the clinical efficacy of novel drugs targeting microenvironmental interactions through the inhibition of BcR signaling. In other words, CLL can be considered a prototype disease for studying the intricate interplay between external triggers and intrinsic aberrations and their combined impact on disease evolution. In this review, we will discuss the current understanding of mechanisms underlying NF-κB deregulation in CLL, including micro-environmental, genetic and epigenetic events, and summarize data generated in murine models resembling human CLL. Finally, we will also discuss different strategies undertaken to intervene with the NF-κB pathway and its upstream mediators.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , NF-kappa B/metabolismo , Animais , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Epigênese Genética , Humanos , Leucemia Experimental/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Camundongos , Terapia de Alvo Molecular/métodos , Mutação , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Microambiente TumoralRESUMO
Subset #8 is a distinctive subset of patients with chronic lymphocytic leukemia (CLL) defined by the expression of stereotyped IGHV4-39/IGKV1(D)-39 B-cell receptors. Subset #8 patients experience aggressive disease and exhibit the highest risk for Richter transformation among all CLL. In order to obtain biological insight into this behavior, we profiled the antigen reactivity and signaling capacity of subset #8 vs other clinically aggressive stereotyped subsets, namely subsets #1 and #2. Twenty-seven monoclonal antibodies (mAbs) from subsets #1, #2, and #8 CLL clones were prepared as recombinant human immunoglobulin G1 and used as primary antibodies in enzyme-linked immunosorbent assays against representatives of the major classes of established antigenic targets for CLL. Subset #8 CLL mAbs exhibited broad polyreactivity as they bound to all antigens tested, in clear contrast with the mAbs from the other subsets. Antigen challenge of primary CLL cells indicated that the promiscuous antigen-binding activity of subset #8 mAbs could lead to significant cell activation, again in contrast to the less responsive CLL cells from subsets #1 and #2. These features constitute a distinctive profile for CLL subset #8, supporting the existence of distinct mechanisms of aggressiveness in different immunogenetic subsets of CLL.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antineoplásicos/imunologia , Antígenos de Neoplasias/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Feminino , Humanos , MasculinoRESUMO
We recently reported that chronic lymphocytic leukemia (CLL) subgroups with distinct clonotypic BCRs present discrete patterns of TLR expression, function, and/or tolerance. In this study, to explore whether specific types of BCR/TLR collaboration exist in CLL, we studied the effect of single versus concomitant BCR and/or TLR stimulation on CLL cells from mutated (M-CLL) and unmutated CLL (U-CLL) cases. We stimulated negatively isolated CLL cells by using anti-IgM, imiquimod, and CpG oligodeoxynucleotide for BCR, TLR7, and TLR9, respectively, alone or in combination for different time points. After in vitro culture in the absence of stimulation, differences in p-ERK were identified at any time point, with higher p-ERK levels in U-CLL versus M-CLL. Pronounced p-ERK induction was seen by single stimulation in U-CLL, whereas BCR/TLR synergism was required in M-CLL, in which the effect was overall limited in scale. An opposite pattern was observed regarding induction of apoptosis, as studied by Western blotting for the cleaved fragment of poly(ADP-ribose) polymerase, and the active isoform of caspase-8, with M-CLL responding even to single stimulation, contrasting with U-CLL that showed minimal response. Our findings suggest that concomitant engagement of BCR and TLR leads to differential responses in CLL depending on the mutational status of the BCR. Differential intensity and duration of responses in M-CLL versus U-CLL indicates that the differences in signal transduction between the two subgroups may be primarily quantitative rather than qualitative.
Assuntos
Imunoglobulinas/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Mutação , Receptores de Antígenos de Linfócitos B/imunologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Adjuvantes Imunológicos/farmacologia , Idoso , Idoso de 80 Anos ou mais , Aminoquinolinas/farmacologia , Caspase 8/genética , Caspase 8/imunologia , Feminino , Humanos , Imiquimode , Imunoglobulinas/imunologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos/farmacologia , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genéticaRESUMO
Recent studies on splenic marginal zone lymphoma identified distinct mutations in genes belonging to the B-cell receptor and Toll-like receptor signaling pathways, thus pointing to their potential implication in the biology of the disease. However, limited data is available regarding the exact role of TLRs. We aimed at characterizing the expression pattern of TLRs in splenic marginal zone lymphoma cells and their functional impact on the activation, proliferation and viability of malignant cells in vitro. Cells expressed significant levels of TLR1, TLR6, TLR7, TLR8, TLR9 and TLR10 mRNA; TLR2 and TLR4 showed a low, variable pattern of expression among patients whereas TLR3 and TLR5 mRNAs were undetectable; mRNA specific for TLR signaling molecules and adapters was also expressed. At the protein level, TLR1, TLR6, TLR7, TLR9 and TLR10 were detected. Stimulation of TLR1/2, TLR2/6 and TLR9 with their respective ligands triggered the activation of IRAK kinases, MAPK and NF-κB signaling pathways, and the induction of CD86 and CD25 activation molecules, although in a heterogeneous manner among different patient samples. TLR-induced activation and cell viability were also inhibited by a specific IRAK1/4 inhibitor, thus strongly supporting the specific role of TLR signaling in these processes. Furthermore, TLR2/6 and TLR9 stimulation also significantly increased cell proliferation. In conclusion, we demonstrate that splenic marginal zone lymphoma cells are equipped with functional TLR and signaling molecules and that the stimulation of TLR1/2, TLR2/6 and TLR9 may play a role in regulating disease pathobiology, likely promoting the expansion of the neoplastic clone.
Assuntos
Proliferação de Células , Linfoma de Zona Marginal Tipo Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Neoplasias Esplênicas/metabolismo , Receptores Toll-Like/agonistas , Feminino , Humanos , Linfoma de Zona Marginal Tipo Células B/patologia , Masculino , Neoplasias Esplênicas/patologia , Receptores Toll-Like/metabolismo , Células Tumorais CultivadasRESUMO
Critical processes of B-cell physiology, including immune signaling through the B-cell receptor (BcR) and/or Toll-like receptors (TLRs), are targeted by microRNAs. With this in mind and also given the important role of BcR and TLR signaling and microRNAs in chronic lymphocytic leukemia (CLL), we investigated whether microRNAs could be implicated in shaping the behavior of CLL clones with distinct BcR and TLR molecular and functional profiles. To this end, we examined 79 CLL cases for the expression of 33 microRNAs, selected on the following criteria: (a) deregulated in CLL versus normal B-cells; (b) differentially expressed in CLL subgroups with distinct clinicobiological features; and, (c) if meeting (a) + (b), having predicted targets in the immune signaling pathways. Significant upregulation of miR-150, miR-29c, miR-143 and miR-223 and downregulation of miR-15a was found in mutated versus unmutated CLL, with miR-15a showing the highest fold difference. Comparison of two major subsets with distinct stereotyped BcRs and signaling signatures, namely subset 1 [IGHV1/5/7-IGKV1(D)-39, unmutated, bad prognosis] versus subset 4 [IGHV4-34/IGKV2-30, mutated, good prognosis] revealed differences in the expression of miR-150, miR-29b, miR-29c and miR-101, all down-regulated in subset 1. We were also able to link these distinct microRNA profiles with cellular phenotypes, importantly showing that, in subset 1, miR-101 downregulation is associated with overexpression of the enhancer of zeste homolog 2 (EZH2) protein, which has been associated with clinical aggressiveness in other B-cell lymphomas. In conclusion, specific miRNAs differentially expressed among CLL subgroups with distinct BcR and/or TLR signaling may modulate the biological and clinical behavior of the CLL clones.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Humanos , Fenômenos Imunogenéticos , Imunoglobulinas/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Masculino , Complexo Repressor Polycomb 2/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos B/imunologiaRESUMO
Nowadays, chronic lymphocytic leukemia (CLL) is considered as a prototypic antigen-driven lymphoma, with antigenic stimuli from the microenvironment promoting tumor outgrowth. Antigen recognition is a function of both the clonotypic B cell receptor immunoglobulin (BcR IG) and various other immune sensors, e.g., the Toll-like receptors. The critical role of BcR IG-mediated signaling in CLL development and evolution is underscored by the following: the disease-biased IG gene repertoire; the subdivision of CLL based on the somatic hypermutation load of the BcR IG into two broad categories with vastly different prognosis and eventual outcome; the existence of subsets of cases with distinct, quasi-identical (stereotyped) BcR IGs; and the clinical efficacy of novel therapeutics inhibiting BcR signaling. Here, we trace the immunogenetic evidence for antigen selection in CLL and also consider the types of implicated antigens as well as the immune signaling pathways relevant for CLL ontogeny and clonal progression.
Assuntos
Antígenos/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Regiões Determinantes de Complementaridade , Genes de Imunoglobulinas , Humanos , Imunidade Inata , Hipermutação Somática de ImunoglobulinaRESUMO
Subgroups of patients with chronic lymphocytic leukemia (CLL) have distinct expression profiles of Toll-like receptor (TLR) pathway-associated genes. To test the hypothesis that signaling through innate immunity receptors may influence the behavior of the malignant clone, we investigated the functional response triggered by the stimulation of TLRs and NOD2 in 67 CLL cases assigned to different subgroups on the basis of immunoglobulin heavy variable (IGHV ) gene usage, IGHV gene mutational status or B-cell receptor (BcR) stereotypy. Differences in the induction of costimulatory molecules and/or apoptosis were observed in mutated versus unmutated CLL. Different responses were also identified in subsets with stereotyped BcRs, underscoring the idea that "subset-biased" innate immunity responses may occur independently of mutational status. Additionally, differential modulation of kinase activities was induced by TLR stimulation of different CLL subgroups, revealing a TLR7-tolerant state for cases belonging to stereotyped subset #4. The distinct patterns of TLR/NOD2 functional activity in cells from CLL subgroups defined by the molecular features of the clonotypic BcRs might prove relevant for elucidating the immune mechanisms underlying CLL natural history and for defining subgroups of patients who might benefit from treatment with specific TLR ligands.
Assuntos
Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Antígenos CD/metabolismo , Sobrevivência Celular/imunologia , Células Clonais , Análise Mutacional de DNA , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/patologia , Ligantes , Masculino , Proteína Adaptadora de Sinalização NOD2/metabolismo , Fosforilação , Receptores Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
The TA-isoform of the p63 transcription factor (TAp63) has been reported to contribute to clinical aggressiveness in chronic lymphocytic leukemia (CLL) in a hitherto elusive way. Here, we sought to further understand and define the role of TAp63 in the pathophysiology of CLL. First, we found that elevated TAp63 expression levels are linked with adverse clinical outcomes, including disease relapse and shorter time-to-first treatment and overall survival. Next, prompted by the fact that TAp63 participates in an NF-κB/TAp63/BCL2 antiapoptotic axis in activated mature, normal B cells, we explored molecular links between TAp63 and BCL2 also in CLL. We documented a strong correlation at both the protein and the messenger RNA (mRNA) levels, alluding to the potential prosurvival role of TAp63. This claim was supported by inducible downregulation of TAp63 expression in the MEC1 CLL cell line using clustered regularly interspaced short palindromic repeats (CRISPR) system, which resulted in downregulation of BCL2 expression. Next, using chromatin immunoprecipitation (ChIP) sequencing, we examined whether BCL2 might constitute a transcriptional target of TAp63 and identified a significant binding profile of TAp63 in the BCL2 gene locus, across a genomic region previously characterized as a super enhancer in CLL. Moreover, we identified high-confidence TAp63 binding regions in genes mainly implicated in immune response and DNA-damage procedures. Finally, we found that upregulated TAp63 expression levels render CLL cells less responsive to apoptosis induction with the BCL2 inhibitor venetoclax. On these grounds, TAp63 appears to act as a positive modulator of BCL2, hence contributing to the antiapoptotic phenotype that underlies clinical aggressiveness and treatment resistance in CLL.
Assuntos
Leucemia Linfocítica Crônica de Células B , Apoptose/genética , Regulação da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Transcrição , Proteínas Supressoras de Tumor/metabolismoRESUMO
BACKGROUND: Signaling through the B-cell receptor appears to be a major contributor to the pathogenesis of chronic lymphocytic leukemia. Toll-like receptors bridge the innate and adaptive immune responses by acting as co-stimulatory signals for B cells. The available data on the expression of Toll-like receptors in chronic lymphocytic leukemia are limited and derive from small series of patients. DESIGN AND METHODS: We profiled the expression of genes associated with Toll-like receptor signaling pathways in 192 cases of chronic lymphocytic leukemia and explored potential associations with molecular features of the clonotypic B-cell receptors. RESULTS: Chronic lymphocytic leukemia cells express all Toll-like receptors expressed by normal activated B cells, with high expression of TLR7 and CD180, intermediate expression of TLR1, TLR6, TLR10 and low expression of TLR2 and TLR9. The vast majority of adaptors, effectors and members of the NFKB, JNK/p38, NF/IL6 and IRF pathways are intermediately-to-highly expressed, while inhibitors of Toll-like receptor activity are generally low-to-undetectable, indicating that the Toll-like receptor-signaling framework is competent in chronic lymphocytic leukemia. Significant differences were identified for selected genes between cases carrying mutated or unmutated IGHV genes or assigned to different subsets with stereotyped B-cell receptors. The differentially expressed molecules include receptors, NFκB/MAPK signaling molecules and final targets of the cascade. CONCLUSIONS: The observed variations are suggestive of distinctive activation patterns of the Toll-like receptor signaling pathway in subgroups of cases of chronic lymphocytic leukemia defined by the molecular features of B-cell receptors. Additionally, they indicate that different or concomitant signals acting through receptors other than the B-cell receptor can affect the behavior of the malignant clone.
Assuntos
Linfócitos B/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/biossíntese , Receptores Toll-Like/biossíntese , Linfócitos B/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Toll-Like/genéticaAssuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Leucemia Linfocítica Crônica de Células B/classificação , Mutação , Encurtamento do Telômero , Estudos de Coortes , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Análise de Sequência de DNA , Análise de Sobrevida , Telômero/ultraestruturaRESUMO
It has been proposed that vitamin D may play a role in prevention and treatment of cancer while epidemiological studies have linked vitamin D insufficiency to adverse disease outcomes in various B cell malignancies, including chronic lymphocytic leukemia (CLL). In this study, we sought to obtain deeper biological insight into the role of vitamin D and its receptor (VDR) in the pathophysiology of CLL. To this end, we performed expression analysis of the vitamin D pathway molecules; complemented by RNA-Sequencing analysis in primary CLL cells that were treated in vitro with calcitriol, the biologically active form of vitamin D. In addition, we examined calcitriol effects ex vivo in CLL cells cultured in the presence of microenvironmental signals, namely anti-IgM/CD40L, or co-cultured with the supportive HS-5 cells; and, CLL cells from patients under ibrutinib treatment. Our study reports that the calcitriol/VDR system is functional in CLL regulating signaling pathways critical for cell survival and proliferation, including the TLR and PI3K/AKT pathways. Moreover, calcitriol action is likely independent of the microenvironmental signals in CLL, since it was not significantly affected when combined with anti-IgM/CD40L or in the context of the co-culture system. This finding was also supported by our finding of preserved calcitriol signaling capacity in CLL patients under ibrutinib treatment. Overall, our results indicate a relevant biological role for vitamin D in CLL pathophysiology and allude to the potential clinical utility of vitamin D supplementation in patients with CLL.
RESUMO
Recent studies of chronic lymphocytic leukemia (CLL) have reported recurrent mutations in the RPS15 gene, which encodes the ribosomal protein S15 (RPS15), a component of the 40S ribosomal subunit. Despite some evidence about the role of mutant RPS15 (mostly obtained from the analysis of cell lines), the precise impact of RPS15 mutations on the translational program in primary CLL cells remains largely unexplored. Here, using RNA sequencing and ribosome profiling, a technique that involves measuring translational efficiency, we sought to obtain global insight into changes in translation induced by RPS15 mutations in CLL cells. To this end, we evaluated primary CLL cells from patients with wild-type or mutant RPS15 as well as MEC1 CLL cells transfected with mutant or wild-type RPS15. Our data indicate that RPS15 mutations rewire the translation program of primary CLL cells by reducing their translational efficiency, an effect not seen in MEC1 cells. In detail, RPS15 mutant primary CLL cells displayed altered translation efficiency of other ribosomal proteins and regulatory elements that affect key cell processes, such as the translational machinery and immune signaling, as well as genes known to be implicated in CLL, hence highlighting a relevant role for RPS15 in the natural history of CLL.
Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Mutação , RNA , Proteínas Ribossômicas/genéticaRESUMO
Toll interleukin-1 receptor 8 (also known as TIR8, SIGIRR, or IL1R8) is a transmembrane receptor that inhibits inflammation. Accordingly, genetic inactivation of this protein exacerbates chronic inflammation and inflammation-associated tumors in mice. In particular, lack of TIR8 triggers leukemia progression in a mouse model of chronic lymphocytic leukemia (CLL), supporting its role as a novel tumor restrainer. The aim of this study was to measure the amount of TIR8 mRNA and protein in CLL cells, and to analyze its regulation of expression. Circulating leukemic cells expressed lower levels of TIR8 compared to normal B-lymphocytes. Treatment of CLL cells with Azacytidine restored higher levels of TIR8 suggesting that DNA methylation may be involved in modulating TIR8 expression, with implications for novel therapeutic strategies.