Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(48): e2304062, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507824

RESUMO

Free-standing tin phosphide/phosphate carbon composite nanofiber mats of unique nanostructure have been successfully synthesized by electrospinning and partially reducing the phosphate-containing precursors. An unusual effect of the Sn:P molar ratio in the precursor solution on the structure and physical-electrochemical properties of the material is observed. Physical characterizations, including X-Ray diffraction (XRD), Raman spectroscopy, X-Ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), confirm the formation of tin phosphide/phosphate nanoparticles of P-rich inner Snx P layer and Sn-rich outer layer uniformly distributed within carbon nanofiber matrix when the Sn:P=1:1. The prepared material is tested as an anode material for lithium-ion batteries and it retains 1141 mAh g-1 charge capacity after 300 cycles at a current density of 250 mA g-1 with almost 100% Coulombic efficiency at room temperature. Furthermore, it demonstrates six times higher capacity (846 mAh g-1 ) at 0 °C compared to a commercial graphite anode and stable cyclability at -20 °C and 50 mA g-1 . Post-mortem ex situ XRD and SEM analyses confirm the structural stability of the designed material and the formation of a uniform stable solid electrolyte interphase layer even after 100 cycles at 50 mA g- 1 .

2.
Sensors (Basel) ; 20(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932744

RESUMO

With the increase of interest in the application of piezoelectric polyvinylidene fluoride (PVDF) in nanogenerators (NGs), sensors, and microdevices, the most efficient and suitable methods of their synthesis are being pursued. Electrospinning is an effective method to prepare higher content ß-phase PVDF nanofiber films without additional high voltage poling or mechanical stretching, and thus, it is considered an economically viable and relatively simple method. This work discusses the parameters affecting the preparation of the desired phase of the PVDF film with a higher electrical output. The design and selection of optimum preparation conditions such as solution concentration, solvents, the molecular weight of PVDF, and others lead to electrical properties and performance enhancement in the NG, sensor, and other applications. Additionally, the effect of the nanoparticle additives that showed efficient improvements in the PVDF films was discussed as well. For instance, additives of BaTiO3, carbon nanotubes, graphene, nanoclays, and others are summarized to show their contributions to the higher piezo response in the electrospun PVDF. The recently reported applications of electrospun PVDF films are also analyzed in this review paper.

3.
RSC Adv ; 12(43): 27899-27906, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320268

RESUMO

A pure-phase Ni3Sn2 intermetallic alloy encapsulated in a carbon nanofiber matrix (Ni3Sn2@CNF) was successfully prepared by electrospinning and applied as anode for lithium-ion batteries. The physical and electrochemical properties of the Ni3Sn2@CNF were compared to that of pure CNF. The resultant Ni3Sn2@CNF anode produced a high initial discharge capacity of ∼1300 mA h g-1, later stabilizing and retaining ∼350 mA h g-1 (vs. 133 mA h g-1 for CNF) after 100 cycles at 0.1C. Furthermore, even at a high current density of 1C, it delivered a high initial discharge capacity of ∼1000 mA h g-1, retaining ∼313 mA h g-1 (vs. 66 mA h g-1 for CNF) at the 200th cycle. The superior electrochemical properties of the Ni3Sn2@CNF over CNF were attributed to the presence of electrochemically active Sn and decreased charge-transfer resistance with the alloy encapsulation, as confirmed from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results. Finally, post-mortem field-emission scanning electron microscopy (FE-SEM) images proved the preservation of the carbon nanofibers and the alloy after cycling, confirming the successful accommodation of the volume changes during the alloying/dealloying reactions of Sn in the Ni3Sn2@CNF.

4.
Polymers (Basel) ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36501721

RESUMO

The three-dimensional (3D) structure of batteries nowadays obtains a lot of attention because it provides the electrodes a vast surface area to accommodate and employ more active material, resulting in a notable increase in areal capacity. However, the integration of polymer electrolytes to complicated three-dimensional structures without defects is appealing. This paper presents the creation of a flawless conformal coating for a distinctive 3D-structured NiO/Ni anode using a simple thermal oxidation technique and a polymer electrolyte consisting of three layers of PAN-(PAN-PVA)-PVA with the addition of Al2O3 nanoparticles as nanofillers. Such a composition with a unique combination of polymers demonstrated superior electrode performance. PAN in the polymer matrix provides mechanical stability and corrosion resistance, while PVA contributes to excellent ionic conductivity. As a result, NiO/Ni@PAN-(PAN-PVA)-PVA with 0.5 wt% Al2O3 NPs configuration demonstrated enhanced cycling stability and superior electrochemical performance, reaching 546 mAh g-1 at a 0.1 C rate.

5.
Nanoscale Adv ; 4(21): 4606-4616, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341286

RESUMO

Advanced all-solid-state batteries are considered as the most preferable power source for the next generation devices. Such batteries demand consumption of electrode materials with high energy and power density. One of the excellent solutions is the utilization of Li metal as anode which provides opportunity to fulfill such requirements. Yet, obstacles such as interfacial impedance and reactivity of Li metal with promising solid electrolytes prevent the consumption of the Li anode. Despite its outstanding stability under ambient conditions, high ionic conductivity and facile synthesis methods, NASICON-type Li1.3Al0.3Ti1.7(PO4)3 also suffers from the above mentioned problems. In this work, these critical issues were resolved by applying an artificial protective interlayer. Herein, the layer-by-layer polymer assembly approach of the ultra-thin interlayer of (PAA/PEO)30 on either side of solid electrolyte pellets simultaneously is presented. The introduction of the protective layer prevented a formation of mixed conduction interphase and effectively decreased the interfacial impedance. A symmetric cell with Li metal electrodes performed over 600 hours at 0.1 mA cm-2. Furthermore, an all-solid-state Li metal battery, assembled with the modified LATP solid electrolyte and LiFePO4 cathode, demonstrated an excellent electrochemical performance with an initial discharge capacity of 115 mA h g-1 and a capacity retention of 93% over 20 cycles with a coloumbic efficiency of almost 100%. The LATP with the (PAA/PEO)30 coating exhibited electrochemical stability up to 5 V.

6.
Nanomaterials (Basel) ; 12(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009974

RESUMO

New porous activated carbons with a high surface area as an anode material for lithium-ion batteries (LIBs) were synthesized by a one-step, sustainable, and environmentally friendly method. Four chemical activators-H2SO4, H3PO4, KOH, and ZnCl2-have been investigated as facilitators of the formation of the porous structure of activated carbon (AC) from an agar precursor. The study of the materials by Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) methods revealed its highly porous meso- and macro-structure. Among the used chemical activators, the AC prepared with the addition of KOH demonstrated the best electrochemical performance upon its reaction with lithium metal. The initial discharge capacity reached 931 mAh g-1 and a reversible capacity of 320 mAh g-1 was maintained over 100 cycles at 0.1 C. High rate cycling tests up to 10 C demonstrated stable cycling performance of the AC from agar.

7.
Materials (Basel) ; 14(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810339

RESUMO

Conductive and flexible CuS films with unique hierarchical nanocrystalline branches directly grown on three-dimensional (3D) porous Cu foam were fabricated using an easy and facile solution processing method without a binder and conductive agent for the first time. The synthesis procedure is quick and does not require complex routes. The structure and morphology of the as-deposited CuS/Cu films were characterized by X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and transmission electron spectroscopy, respectively. Pure crystalline hexagonal structured CuS without impurities were obtained for the most saturated S solution. Electrochemical testing of CuS/Cu foam electrodes showed a reasonable capacity of 450 mAh·g-1 at 0.1 C and excellent cyclability, which might be attributed to the unique 3D structure of the current collector and hierarchical nanocrystalline branches that provide fast diffusion and a large surface area.

8.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207623

RESUMO

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium-sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g-1 and maintained a capacity of 991 mAh g-1 after 100 cycles at 0.2 C as a cathode in a lithium-sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g-1, as well as a high areal capacity (4.47 mAh cm-2) under high loading (5 mg cm-2).

9.
Nanomaterials (Basel) ; 10(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050363

RESUMO

Low dimensional Si-based materials are very promising anode candidates for the next-generation lithium-ion batteries. However, to satisfy the ever-increasing demand in more powerful energy storage devices, electrodes based on Si materials should display high-power accompanied with low volume change upon operation. Thus far, there were no reports on the Si-based materials which satisfy the stated requirements. Hence, here, we report on modified onion-structured Si nanoparticles (SiNPs) co-coated with Li4Ti5O12 (LTO) and cyclized polyacrylonitrile (cPAN) to bring the synergistic effect enhancing the conductivity, tolerance to volume change and stable performance. Obtained results suggest that the nanoparticles were conformally coated with both materials simultaneously and the thicknesses of the films were in a range of a few nanometers. Electrochemical tests show that the modified SiNPs deliver a high initial capacity of 2443 mAh g-1 and stable capacity retention over 50 cycles with 95% Coulombic efficiency.

10.
ChemistryOpen ; 7(1): 92-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29318101

RESUMO

This work reports the preparation of a three-dimensional Si thin film negative electrode employing a porous Cu current collector. A previously reported copper etching procedure was modified to develop the porous structures inside a 9 µm thick copper foil. Magnetron sputtering was used for the deposition of an n-type doped 400 nm thick amorphous Si thin film. Electrochemical cycling of the prepared anode confirmed the effectiveness of utilizing the approach. The designed Si thin film electrode retained a capacity of around 67 µAh cm-2 (1675 mAh g-1) in 100th cycle. The improved electrochemical performance resulted in an enhancement of both areal capacity and capacity retention in contrast with flat and rough current collectors that were prepared for comparison.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA