Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 30(5): 1897-1912, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34990810

RESUMO

RNA vaccines have demonstrated efficacy against SARS-CoV-2 in humans, and the technology is being leveraged for rapid emergency response. In this report, we assessed immunogenicity and, for the first time, toxicity, biodistribution, and protective efficacy in preclinical models of a two-dose self-amplifying messenger RNA (SAM) vaccine, encoding a prefusion-stabilized spike antigen of SARS-CoV-2 Wuhan-Hu-1 strain and delivered by lipid nanoparticles (LNPs). In mice, one immunization with the SAM vaccine elicited a robust spike-specific antibody response, which was further boosted by a second immunization, and effectively neutralized the matched SARS-CoV-2 Wuhan strain as well as B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta) variants. High frequencies of spike-specific germinal center B, Th0/Th1 CD4, and CD8 T cell responses were observed in mice. Local tolerance, potential systemic toxicity, and biodistribution of the vaccine were characterized in rats. In hamsters, the vaccine candidate was well-tolerated, markedly reduced viral load in the upper and lower airways, and protected animals against disease in a dose-dependent manner, with no evidence of disease enhancement following SARS-CoV-2 challenge. Therefore, the SARS-CoV-2 SAM (LNP) vaccine candidate has a favorable safety profile, elicits robust protective immune responses against multiple SARS-CoV-2 variants, and has been advanced to phase 1 clinical evaluation (NCT04758962).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Lipossomos , Camundongos , Nanopartículas , RNA Mensageiro , Ratos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Distribuição Tecidual
2.
J Immunol ; 195(4): 1617-27, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26170383

RESUMO

Induction of persistent protective immune responses is a key attribute of a successful vaccine formulation. MF59 adjuvant, an oil-in-water emulsion used in human vaccines, is known to induce persistent high-affinity functional Ab titers and memory B cells, but how it really shapes the Ag-specific B cell compartment is poorly documented. In this study, we characterized the Ab- and Ag-specific B cell compartment in wild-type mice immunized with HlaH35L, a Staphylococcus aureus Ag known to induce measurable functional Ab responses, formulated with MF59 or aluminum salts, focusing on germinal centers (GC) in secondary lymphoid organs. Taking advantage of single-cell flow cytometry analyses, HlaH35L-specific B cells were characterized for the expression of CD38 and GL-7, markers of memory and GC, respectively, and for CD80 and CD73 activation markers. We demonstrated that immunization with MF59-, but not aluminum salt-adjuvanted HlaH35L, induced expanded Ag-specific CD73(+)CD80(-) GC B cells in proximal- and distal-draining lymph nodes, and promoted the persistence of GC B cells, detected up to 4 mo after immunization. In addition to increasing GC B cells, MF59-adjuvanted HlaH35L also increased the frequency of T follicular helper cells. This work extends previous knowledge regarding adaptive immune responses to MF59-adjuvanted vaccines, and, to our knowledge, for the first time an adjuvant used in human licensed products is shown to promote strong and persistent Ag-specific GC responses that might benefit the rational design of new vaccination strategies.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Centro Germinativo/citologia , Centro Germinativo/imunologia , Polissorbatos , Esqualeno , Vacinação , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos/imunologia , Antígenos CD/metabolismo , Linfócitos B/metabolismo , Toxinas Bacterianas/imunologia , Quimiotaxia de Leucócito/imunologia , Feminino , Proteínas Hemolisinas/imunologia , Imunofenotipagem , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Fenótipo , Esqualeno/imunologia , Vacinas Antiestafilocócicas
3.
Mol Cell Proteomics ; 14(8): 2138-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018414

RESUMO

Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.


Assuntos
Proteínas de Bactérias/metabolismo , Lipoproteínas/metabolismo , Microdomínios da Membrana/metabolismo , Streptococcus pyogenes/metabolismo , Meios de Cultura , Células HEK293 , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Peso Molecular , Mutação/genética , Penicilinas/farmacologia , Software , Streptococcus pyogenes/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo
4.
Infect Immun ; 83(8): 3157-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015481

RESUMO

Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug-resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murine Staphylococcus aureus infection model, in which bacteria were inoculated in an air pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation, four-component S. aureus vaccine (4C-Staph), prior to infection allowed us to measure bacteria, cytokines, and 4C-Staph-specific antibodies and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed the upregulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infection was also obtained in mice immunized with 4C-Staph and depleted of neutrophils; these mice showed an increase in monocytes and macrophages. Upregulation of the FcγR and the presence of antigen-specific antibodies induced by immunization with 4C-Staph may contribute to increase bacterial opsonophagocytosis. Protection in neutropenic mice indicated that an effective vaccine could activate alternative protection mechanisms compensating for neutropenia, a condition often occurring in S. aureus-infected patients.


Assuntos
Monócitos/imunologia , Neutropenia/imunologia , Neutrófilos/imunologia , Receptores de IgG/genética , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Neutropenia/genética , Neutropenia/microbiologia , Receptores de IgG/imunologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética , Staphylococcus aureus/genética
5.
Cytometry A ; 87(4): 357-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704858

RESUMO

The recent introduction of mass cytometry, a technique coupling a cell introduction system generating a stream of single cells with mass spectrometry, has greatly increased the number of parameters that can be measured per single cell. As with all new technology there is a need for dissemination of standardization and quality control procedures. Here, we characterize variations in sensitivity observed across the mass range of a mass cytometer, using different lanthanide tags. We observed a five-fold difference in lanthanide detection over the mass range and demonstrated that each instrument has its own sensitivity pattern. Therefore, the selection of lanthanide combinations is a key step in the establishment of a staining panel for mass cytometry-based experiments, particularly for multicenter studies. We propose the sensitivity pattern as the basis for panel design, instrument standardization and future implementation of normalization algorithms.


Assuntos
Citometria de Fluxo/métodos , Elementos da Série dos Lantanídeos/metabolismo , Espectrometria de Massas/métodos , Coloração e Rotulagem/métodos , Algoritmos , Animais , Anticorpos/imunologia , Células Cultivadas , Citometria de Fluxo/instrumentação , Corantes Fluorescentes , Isótopos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia
6.
Blood ; 117(21): 5683-91, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21487111

RESUMO

TLR7 and TLR8 are intracellular sensors activated by single-stranded RNA species generated during viral infections. Various synthetic small molecules can also activate TLR7 or TLR8 or both through an unknown mechanism. Notably, direct interaction between small molecules and TLR7 or TLR8 has never been shown. To shed light on how small molecule agonists target TLRs, we labeled 2 imidazoquinolines, resiquimod and imiquimod, and one adenine-based compound, SM360320, with 2 different fluorophores [5(6) carboxytetramethylrhodamine and Alexa Fluor 488] and monitored their intracellular localization in human plasmacytoid dendritic cells (pDCs). All fluorescent compounds induced the production of IFN-α, TNF-α, and IL-6 and the up-regulation of CD80 and CD86 by pDCs showing they retained TLR7-stimulating activity. Confocal imaging of pDCs showed that, similar to CpG-B, all compounds concentrated in the MHC class II loading compartment (MIIC), identified as lysosome-associated membrane protein 1(+), CD63, and HLA-DR(+) endosomes. Treatment of pDCs with bafilomycin A, an antagonist of the vacuolar-type proton ATPase controlling endosomal acidification, prevented the accumulation of small molecule TLR7 agonists, but not of CpG-B, in the MIIC. These results indicate that a pH-driven concentration of small molecule TLR7 agonists in the MIIC is required for pDC activation.


Assuntos
Adenina/análogos & derivados , Aminoquinolinas/farmacocinética , Células Dendríticas/metabolismo , Corantes Fluorescentes , Genes MHC da Classe II/fisiologia , Imidazóis/farmacocinética , Receptor 7 Toll-Like/agonistas , Adenina/farmacocinética , Antineoplásicos/farmacocinética , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Humanos , Imiquimode , Macrolídeos/farmacologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Quinolinas/química , Quinolinas/farmacocinética , Receptor 7 Toll-Like/metabolismo
7.
Vaccine ; 41(3): 724-734, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36564274

RESUMO

The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.


Assuntos
Hidróxido de Alumínio , Vacinas Meningocócicas , Adulto , Humanos , Interferons , Receptor 7 Toll-Like , Antivirais , Vacinas Conjugadas , Adjuvantes Imunológicos , Citocinas , Análise de Sistemas
8.
Proc Natl Acad Sci U S A ; 106(10): 3877-82, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19237568

RESUMO

Immune responses to vaccination are tested in clinical trials. This process usually requires years especially when immune memory and persistence are analyzed. Markers able to quickly predict the immune response would be very useful, particularly when dealing with emerging diseases that require a rapid response, such as avian influenza. To address this question we vaccinated healthy adults at days 1, 22, and 202 with plain or MF59-adjuvanted H5N1 subunit vaccines and tested both cell-mediated and antibody responses up to day 382. Only the MF59-H5N1 vaccine induced high titers of neutralizing antibodies, a large pool of memory H5N1-specific B lymphocytes, and H5-CD4(+) T cells broadly reactive with drifted H5. The CD4(+) response was dominated by IL-2(+) IFN-gamma(-) IL-13(-) T cells. Remarkably, a 3-fold increase in the frequency of virus-specific total CD4(+) T cells, measurable after 1 dose, accurately predicted the rise of neutralizing antibodies after booster immunization and their maintenance 6 months later. We suggest that CD4(+) T cell priming might be used as an early predictor of the immunogenicity of prepandemic vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adulto , Formação de Anticorpos/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta Imunológica , Humanos , Memória Imunológica/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Vacinas contra Influenza/farmacologia , Testes de Neutralização , Fenótipo , Polissorbatos/farmacologia , Esqualeno/farmacologia , Células Th1/citologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Fatores de Tempo , Vacinação
9.
Bioanalysis ; 14(10): 627-692, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35578974

RESUMO

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included three Main Workshops and seven Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "context of use" [COU]); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 9 and 11 (2022), respectively.


Assuntos
Citometria de Fluxo , Biomarcadores/análise , Citometria de Fluxo/métodos , Humanos , Indicadores e Reagentes , Biópsia Líquida , Espectrometria de Massas
10.
Blood ; 113(18): 4232-9, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19176317

RESUMO

Dendritic cell (DC) populations play unique and essential roles in the detection of pathogens, but information on how different DC types work together is limited. In this study, 2 major DC populations of human blood, myeloid (mDCs) and plasmacytoid (pDCs), were cultured alone or together in the presence of pathogens or their products. We show that pDCs do not respond to whole bacteria when cultured alone, but mature in the presence of mDCs. Using purified stimuli, we dissect this cross-talk and demonstrate that mDCs and pDCs activate each other in response to specific induction of only one of the cell types. When stimuli for one or both populations are limited, they synergize to reach optimal activation. The cross-talk is limited to enhanced antigen presentation by the nonresponsive population with no detectable changes in the quantity and range of cytokines produced. We propose that each population can be a follower or leader in immune responses against pathogen infections, depending on their ability to respond to infectious agents. In addition, our results indicate that pDCs play a secondary role to induce immunity against human bacterial infections, which has implications for more efficient targeting of DC populations with improved vaccines and therapeutics.


Assuntos
Bactérias/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Mieloides/imunologia , Células Mieloides/microbiologia , Técnicas de Cultura de Células , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Rim/metabolismo , Luciferases/metabolismo , Ativação Linfocitária/imunologia , Fagocitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/genética , Transfecção
11.
Anal Biochem ; 418(2): 224-30, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21820996

RESUMO

Flow cytometry (FC) has been widely used in biological research; however, its use for vaccine characterization has been very limited. Here we describe the development of an FC method for the direct quantification of two Neisseria meningitidis vaccine antigens, in mono- and multivalent formulations, while still adsorbed on aluminum hydroxide (AH) suspension. The antibody-based method is specific and sensitive. Because FC allows microscopic particle examination, the entire aluminum suspension carrying adsorbed antigen(s) can be analyzed directly. In addition to determining antigen concentration and identity, the assay is able to determine the distribution of the antigens on AH. High correlation coefficients (r(2)) were routinely achieved for a broad range of antigen doses from 0 to 150 µg/dose. Traditional assays for quantitative and qualitative antigen characterization on AH particles involve either complete aluminum dissolution or antigen desorption from the adjuvant. Because our direct method uses the whole AH suspension, the cumbersome steps used by traditional methods are not required. Those steps are often inefficient in desorbing the antigens and in some cases can lead to protein denaturation. We believe that this novel FC-based assay could circumvent some of the complex and tedious antigen-adjuvant desorption methods.


Assuntos
Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Antígenos Virais/análise , Citometria de Fluxo/métodos , Vacinas Meningocócicas/análise , Adsorção , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/patologia , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/metabolismo , Neisseria meningitidis/imunologia , Neisseria meningitidis/metabolismo
12.
Hematol Oncol ; 29(1): 31-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20658474

RESUMO

Analyses of the tumour immunoglobulin (Ig) gene (IG) heavy (H) and light chains show heterogeneity of mutational status, but reveal common features of ongoing IGH isotype-switching with multiple IGH isotype expression and preference of IG lambda (IGL) light chain with selective use of IGLJ3. Phenotypic and immunogenetic analyses were performed in a series of 105 HCL patients to estimate prevalence of multiple IG light chain expression by the tumour cells. By phenotype, 3/105 HCL (2.9%) expressed double tumour-related Ig kappa (K) and L light chain proteins. By immunogenetic analysis, functional mutated double IGK(I) /IGK(II) , IGK(I) /IGL(I) and IGL(I) /IGL(II) transcripts were cloned and sequenced in 3/71 (4.2%) HCL. These latter three HCL expressed multiple IGH isotypes with mutated IGHVDJ rearrangements at the time of AID transcript expression. Most interestingly, the three cases had reinduced RAG1 transcript. In the double IGL expresser, single-cell analysis documented co-expression of the tumour-related IGLs in 5/6 cells (83%). In the IGK/IGL co-expresser, evidence of surface IgK/IgL isotype proteins confirmed functionality of the tumour-derived transcripts. The evidence of double light chain expression in single HCs and the new observation of RAG re-induction suggest ongoing selective influences on the BCR that may promote or maintain the HCL clone in the periphery.


Assuntos
Rearranjo Gênico de Cadeia Leve de Linfócito B , Leucemia de Células Pilosas/genética , Receptores de Antígenos de Linfócitos B/genética , Alelos , Proteínas de Homeodomínio/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Leucemia de Células Pilosas/imunologia
13.
Front Immunol ; 12: 757151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777370

RESUMO

CD8+ T cells play a key role in mediating protective immunity after immune challenges such as infection or vaccination. Several subsets of differentiated CD8+ T cells have been identified, however, a deeper understanding of the molecular mechanism that underlies T-cell differentiation is lacking. Conventional approaches to the study of immune responses are typically limited to the analysis of bulk groups of cells that mask the cells' heterogeneity (RNA-seq, microarray) and to the assessment of a relatively limited number of biomarkers that can be evaluated simultaneously at the population level (flow and mass cytometry). Single-cell analysis, on the other hand, represents a possible alternative that enables a deeper characterization of the underlying cellular heterogeneity. In this study, a murine model was used to characterize immunodominant hemagglutinin (HA533-541)-specific CD8+ T-cell responses to nucleic- and protein-based influenza vaccine candidates, using single-cell sorting followed by transcriptomic analysis. Investigation of single-cell gene expression profiles enabled the discovery of unique subsets of CD8+ T cells that co-expressed cytotoxic genes after vaccination. Moreover, this method enabled the characterization of antigen specific CD8+ T cells that were previously undetected. Single-cell transcriptome profiling has the potential to allow for qualitative discrimination of cells, which could lead to novel insights on biological pathways involved in cellular responses. This approach could be further validated and allow for more informed decision making in preclinical and clinical settings.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/farmacologia , Vacinas Baseadas em Ácido Nucleico/farmacologia , Análise de Célula Única , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Vacinas de Subunidades Antigênicas/farmacologia , Adjuvantes Imunológicos , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Vacinação
14.
Biochim Biophys Acta ; 1793(3): 572-83, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19118583

RESUMO

Previously we reported that brief exposure of HL60 cells to a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (CMI) and 2-methyl-4-isothiazolin-3-one (MI) shifts the cells into a state of oxidative stress that induces apoptosis and necrosis. In this study, flow cytometric analysis showed that CMI/MI induces early perturbation of calcium homeostasis, increasing cytosolic and mitochondrial calcium and depleting the intracellular endoplasmic reticulum (ER) stores. The calcium chelator BAPTA-AM reduced necrosis and secondary necrosis, the loss of DeltaPsim and S-glutathionylation induced by necrotic doses of CMI/MI, but did not protect against CMI/MI-induced apoptosis, mitochondrial calcium uptake and mitochondrial hyperpolarization. This indicates that increased cytoplasmic calcium does not have a causal role in the induction of apoptosis, while cross-talk between the ER and mitochondria could be responsible for the induction of apoptosis. GSH-OEt pretreatment, which enhances cellular GSH content, reduced S-glutathionylation and cytosolic and mitochondrial calcium levels, thus protecting against both apoptosis and necrosis shifting to apoptosis. Therefore, the degree of GSH depletion, paralleled by the levels of protein S-glutathionylation, may have a causal role in increasing calcium levels. The mitochondrial calcium increase could be responsible for apoptosis, while necrosis is associated with cytoplasmic calcium overload. These findings suggest that S-glutathionylation of specific proteins acts as a molecular linker between calcium and redox signalling.


Assuntos
Cálcio/metabolismo , Glutationa/metabolismo , Tiazóis/toxicidade , Morte Celular , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Células HL-60 , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo
15.
J Exp Med ; 197(8): 1051-7, 2003 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-12695492

RESUMO

Invariant natural killer T (NKT) cells are a highly conserved subset of T lymphocytes expressing a semi-invariant T cell receptor (TCR), which is restricted to CD1d and specific for the glycosphingolipid antigen alpha-galactosylceramide. Their ability to secrete a variety of cytokines, which in turn modulate the activation of cells of both innate and acquired immune responses, suggests that invariant NKT cells exert a regulatory role mainly via indirect mechanisms. A relevant question is whether invariant NKT cells can directly help B cells. We document here that human invariant NKT cells are as efficient as conventional CD4+ Th0 lymphocytes in promoting proliferation of autologous memory and naive B lymphocytes in vitro, and in inducing immunoglobulin production. Help to B cells by invariant NKT cells is CD1d-dependent and delivered also in the absence of alpha-galactosylceramide, suggesting that NKT cells recognize an endogenous ligand presented by CD1d on B cells. The two major subsets of invariant NKT cells, CD4+ and double negative (CD4-CD8-), express comparable levels of CD40 ligand and cytokines, but differ in helper functions. Indeed, both subsets induce similar levels of B cell proliferation, whereas CD4+ NKT cells induce higher levels of immunoglobulin production. These results suggest a direct role for invariant NKT cells in regulating B lymphocyte proliferation and effector functions.


Assuntos
Antígenos CD1/imunologia , Linfócitos B/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Animais , Antígenos CD1d , Linfócitos B/metabolismo , Divisão Celular/fisiologia , Galactosilceramidas/química , Galactosilceramidas/metabolismo , Humanos , Imunoglobulinas/metabolismo , Células Matadoras Naturais/metabolismo
16.
J Exp Med ; 195(1): 35-41, 2002 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-11781363

RESUMO

The immune response against hepatitis C virus (HCV) is rarely effective at clearing the virus, resulting in approximately 170 million chronic HCV infections worldwide. Here we report that ligation of an HCV receptor (CD81) inhibits natural killer (NK) cells. Cross-linking of CD81 by the major envelope protein of HCV (HCV-E2) or anti-CD81 antibodies blocks NK cell activation, cytokine production, cytotoxic granule release, and proliferation. This inhibitory effect was observed using both activated and resting NK cells. Conversely, on NK-like T cell clones, including those expressing NK cell inhibitory receptors, CD81 ligation delivered a costimulatory signal. Engagement of CD81 on NK cells blocks tyrosine phosphorylation through a mechanism which is distinct from the negative signaling pathways associated with NK cell inhibitory receptors for major histocompatibility complex class I. These results implicate HCV-E2-mediated inhibition of NK cells as an efficient HCV evasion strategy targeting the early antiviral activities of NK cells and allowing the virus to establish itself as a chronic infection.


Assuntos
Antígenos CD/metabolismo , Hepacivirus/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Membrana , Receptores Virais/metabolismo , Proteínas do Envelope Viral/imunologia , Humanos , Capeamento Imunológico , Interleucina-2/imunologia , Ligantes , Proteínas Tirosina Quinases/metabolismo , Receptores de IgG/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Tetraspanina 28
17.
J Control Release ; 316: 12-21, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31678654

RESUMO

α-Tocopherol has been used as an immune supplement in humans, as an emulsion adjuvant component in several veterinary vaccines as well as an immunomodulatory component of AS03, an emulsion adjuvant that was used in an H1N1 pandemic vaccine (Pandemrix). AS03 is manufactured using microfluidization and high-pressure homogenization. Such high energy and complex manufacturing processes make it difficult and expensive to produce emulsion adjuvants on a large scale, especially in developing countries. In this study we have explored simpler, comparatively inexpensive methods, to formulate emulsion adjuvants containing α-tocopherol, that have the potential to be made in any well-established scale-up facility. This might facilitate producing and stock-piling adjuvant doses and therefore aide in pandemic preparedness. We used design of experiment as a tool to explore incorporating α-tocopherol into self-emulsified systems containing squalene oil and polysorbate 80. We created novel self-emulsified adjuvant systems (SE-AS) and evaluated their potency in vivo in BALB/c mice with inactivated quadrivalent influenza vaccine (QIV) and tested the cellular and humoral immune responses against the four vaccine strains.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , alfa-Tocoferol/administração & dosagem , Animais , Emulsões , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Polissorbatos/química , Esqualeno/química , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , alfa-Tocoferol/imunologia
18.
PLoS One ; 11(1): e0147767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26812180

RESUMO

A rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine. This increased efficacy was paralleled by higher vaccine-specific and α-hemolysin-neutralizing antibody titers and Th1/Th17 cell responses. Antibodies played a crucial protective role, as shown by the lack of protection of 4C-Staph/T7-alum vaccine in B-cell-deficient mice and by serum transfer experiments. Depletion of effector CD4+ T cells not only reduced survival but also increased S. aureus load in kidneys of mice immunized with 4C-Staph/T7-alum. The role of IL-17A in the control of bacterial dissemination in 4C-Staph/T7-alum vaccinated mice was indicated by in vivo neutralization experiments. We conclude that single dose 4C-Staph/T7-alum vaccine promptly and efficiently protected mice against S. aureus through the combined actions of antibodies, CD4+ effector T cells, and IL-17A. These data suggest that inclusion of an adjuvant that induces not only fast antibody responses but also IL-17-producing cell-mediated effector responses could efficaciously protect patients scheduled for major surgeries or in intensive care units.


Assuntos
Anticorpos Antibacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucina-17/metabolismo , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Receptor 7 Toll-Like/metabolismo , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/citologia , Citocinas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Baço/metabolismo , Baço/patologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/genética , Taxa de Sobrevida , Células Th1/imunologia , Células Th17/imunologia , Receptor 7 Toll-Like/imunologia
19.
Sci Rep ; 6: 38043, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901071

RESUMO

Staphylococcus aureus is the major cause of human septic arthritis and osteomyelitis, which deserve special attention due to their rapid evolution and resistance to treatment. The progression of the disease depends on both bacterial presence in situ and uncontrolled disruptive immune response, which is responsible for chronic disease. Articular and bone infections are often the result of blood bacteremia, with the knees and hips being the most frequently infected joints showing the worst clinical outcome. We report the development of a hematogenous model of septic arthritis in murine knees, which progresses from an acute to a chronic phase, similarly to what occurs in humans. Characterization of the local and systemic inflammatory and immune responses following bacterial infection brought to light specific signatures of disease. Immunization of mice with the vaccine formulation we have recently described (4C-Staph), induced a strong antibody response and specific CD4+ effector memory T cells, and resulted in reduced bacterial load in the knee joints, a milder general inflammatory state and protection against bacterial-mediated cellular toxicity. Possible correlates of protection are finally proposed, which might contribute to the development of an effective vaccine for human use.


Assuntos
Artrite Infecciosa , Articulação do Joelho , Infecções Estafilocócicas , Vacinas Antiestafilocócicas , Staphylococcus aureus/imunologia , Vacinação , Animais , Artrite Infecciosa/imunologia , Artrite Infecciosa/microbiologia , Artrite Infecciosa/patologia , Artrite Infecciosa/prevenção & controle , Feminino , Articulação do Joelho/imunologia , Articulação do Joelho/microbiologia , Articulação do Joelho/patologia , Camundongos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Vacinas Antiestafilocócicas/farmacologia
20.
Front Immunol ; 6: 439, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441955

RESUMO

Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA