Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(10)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438730

RESUMO

Bisphenol A (BPA) is a widespread pollutant threatening the ecosystem and human health. An effective BPA degrader YC-JY1 was isolated and identified as Sphingobium sp. The optimal temperature and pH for the degradation of BPA by strain YC-JY1 were 30 °C and 6.5, respectively. The biodegradation pathway was proposed based on the identification of the metabolites. The addition of cytochrome P450 (CYP) inhibitor 1-aminobenzotriazole significantly decreased the degradation of BPA by Sphingobium sp. YC-JY1. Escherichia coli BL21 (DE3) cells harboring pET28a-bisdAB achieved the ability to degrade BPA. The bisdB gene knockout strain YC-JY1ΔbisdB was unable to degrade BPA indicating that P450bisdB was an essential initiator of BPA metabolism in strain YC-JY1. For BPA polluted soil remediation, strain YC-JY1 considerably stimulated biodegradation of BPA associated with the soil microbial community. These results point out that strain YC-JY1 is a promising microbe for BPA removal and possesses great application potential.


Assuntos
Compostos Benzidrílicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fenóis/metabolismo , Sphingomonadaceae/enzimologia , Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450/genética , Concentração de Íons de Hidrogênio , Metaboloma , Filogenia , Poluentes do Solo , Sphingomonadaceae/genética , Temperatura
2.
J Hazard Mater ; 412: 125238, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33550123

RESUMO

In this study, the biodegradation towards aryl organophosphate flame retardants (aryl-OPFRs) was investigated by the Rhodococcus-Sphingopyxis consortium, mixture of strain Rhodococcus sp. YC-JH2 and Sphingopyxis sp. YC-JH3. The optimal ratio between the two composition strains was determined as 1:1. Under the optimum condition (pH 8, 35 °C and 0% salinity), the consortium could utilize aryl-OPFRs as sole carbon source and degrade them rapidly with half-life of 4.53, 21.11 and 23.0 h for triphenyl phosphate (TPhP), tricresyl phosphate (TCrP) and 2-ethylhexyl diphenyl phosphate (EHDPP) respectively. The consortium maintained high degrading efficiency under a wide of range of pH (6-10), temperature (20-40 °C) and salinity (0-6%). Besides, the consortium could rapidly degrade high concentration of TPhP and no inhibitory effect towards degradation speed was observed up to 500 mg/L. The effect of metal ions and surfactants was estimated. Most metal ions exhibited significant inhibition, except Zn2+ and Pb2+, which showed no effect or slight promotion. Ionic surfactants could severely reduce the degrading capacity, while nonionic surfactants showed no effect. With abundant inoculation of the consortium, mineralization higher than 75% could be achieved within a week. This study provides efficient microorganisms for bioremediation of aryl-OPFRs contamination.


Assuntos
Retardadores de Chama , Rhodococcus , Sphingomonadaceae , Biodegradação Ambiental , Organofosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA