Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 30(1): 468-484, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34111559

RESUMO

Radiation therapy, a mainstay of treatment for head and neck cancer, is not always curative due to the development of treatment resistance; additionally, multi-institutional trials have questioned the efficacy of concurrent radiation with cetuximab, the epidermal growth factor receptor (EGFR) inhibitor. We unraveled a mechanism for radiation resistance; that is, radiation induces EGFR, which phosphorylates TRIP13 (thyroid hormone receptor interactor 13) on tyrosine 56. Phosphorylated (phospho-)TRIP13 promotes non-homologous end joining (NHEJ) repair to induce radiation resistance. NHEJ is the main repair pathway for radiation-induced DNA damage. Tumors expressing high TRIP13 do not respond to radiation but are sensitive to cetuximab or cetuximab combined with radiation. Suppression of phosphorylation of TRIP13 at Y56 abrogates these effects. These findings show that EGFR-mediated phosphorylation of TRIP13 at Y56 is a vital mechanism of radiation resistance. Notably, TRIP13-pY56 could be used to predict the response to radiation or cetuximab and could be explored as an actionable target.


Assuntos
Neoplasias de Cabeça e Pescoço , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cetuximab/metabolismo , Cetuximab/farmacologia , Reparo do DNA por Junção de Extremidades , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Fosforilação
2.
J Biol Chem ; 295(36): 12661-12673, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32669362

RESUMO

The discovery of activating epidermal growth factor receptor (EGFR) mutations spurred the use of EGFR tyrosine kinase inhibitors (TKIs), such as erlotinib, as the first-line treatment of lung cancers. We previously reported that differential degradation of TKI-sensitive (e.g. L858R) and resistant (T790M) EGFR mutants upon erlotinib treatment correlates with drug sensitivity. We also reported that SMAD ubiquitination regulatory factor 2 (SMURF2) ligase activity is important in stabilizing EGFR. However, the molecular mechanisms involved remain unclear. Here, using in vitro and in vivo ubiquitination assays, MS, and superresolution microscopy, we show SMURF2-EGFR functional interaction is important for EGFR stability and response to TKI. We demonstrate that L858R/T790M EGFR is preferentially stabilized by SMURF2-UBCH5 (an E3-E2)-mediated polyubiquitination. We identified four lysine residues as the sites of ubiquitination and showed that replacement of one of them with acetylation-mimicking glutamine increases the sensitivity of mutant EGFR to erlotinib-induced degradation. We show that SMURF2 extends membrane retention of EGF-bound EGFR, whereas SMURF2 knockdown increases receptor sorting to lysosomes. In lung cancer cell lines, SMURF2 overexpression increased EGFR levels, improving TKI tolerance, whereas SMURF2 knockdown decreased EGFR steady-state levels and sensitized lung cancer cells. Overall, we propose that SMURF2-mediated polyubiquitination of L858R/T790M EGFR competes with acetylation-mediated receptor internalization that correlates with enhanced receptor stability; therefore, disruption of the E3-E2 complex may be an attractive target to overcome TKI resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/enzimologia , Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Substituição de Aminoácidos , Animais , Células CHO , Cricetulus , Resistencia a Medicamentos Antineoplásicos/genética , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Proc Natl Acad Sci U S A ; 113(21): E2935-44, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162365

RESUMO

MLN4924, also known as pevonedistat, is the first-in-class inhibitor of NEDD8-activating enzyme, which blocks the entire neddylation modification of proteins. Previous preclinical studies and current clinical trials have been exclusively focused on its anticancer property. Unexpectedly, we show here, to our knowledge for the first time, that MLN4924, when applied at nanomolar concentrations, significantly stimulates in vitro tumor sphere formation and in vivo tumorigenesis and differentiation of human cancer cells and mouse embryonic stem cells. These stimulatory effects are attributable to (i) c-MYC accumulation via blocking its degradation and (ii) continued activation of EGFR (epidermal growth factor receptor) and its downstream pathways, including PI3K/AKT/mammalian target of rapamycin and RAS/RAF/MEK/ERK, via inducing EGFR dimerization. Finally, MLN4924 accelerates EGF-mediated skin wound healing in mouse and stimulates cell migration in an in vitro culture setting. Taking these data together, our study reveals that neddylation modification could regulate stem cell proliferation and differentiation and that a low dose of MLN4924 might have a therapeutic value for stem cell therapy and tissue regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ciclopentanos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirimidinas/farmacologia , Esferoides Celulares/metabolismo , Células-Tronco/metabolismo , Ubiquitinas/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Animais , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Proteína NEDD8 , Ubiquitinas/metabolismo
4.
Mol Pharmacol ; 94(3): 984-991, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29941666

RESUMO

Several hundred proteins cycle into heterocomplexes with a dimer of the chaperone heat shock protein 90 (Hsp90), regulating their activity and turnover. There are two isoforms of Hsp90, Hsp90α and Hsp90ß, and their relative chaperone activities and composition in these client protein•Hsp90 heterocomplexes has not been determined. Here, we examined the activity of human Hsp90α and Hsp90ß in a purified five-protein chaperone machinery that assembles glucocorticoid receptor (GR)•Hsp90 heterocomplexes to generate high-affinity steroid-binding activity. We found that human Hsp90α and Hsp90ß have equivalent chaperone activities, and when mixed together in this assay, they formed only GR•Hsp90αα and GR•Hsp90ßß homodimers and no GR•Hsp90αß heterodimers. In contrast, GR•Hsp90 heterocomplexes formed in human embryonic kidney (HEK) cells also contain GR•Hsp90αß heterodimers. The formation of GR•Hsp90αß heterodimers in HEK cells probably reflects the longer time permitted for exchange to form Hsp90αß heterodimers in the cell versus in the cell-free assembly conditions. This purified GR-activating chaperone machinery can be used to determine how modifications of Hsp90 affect its chaperone activity. To that effect, we have tested whether the unique phosphorylation of Hsp90α at threonines 5 and 7 that occurs during DNA damage repair affects its chaperone activity. We showed that the phosphomimetic mutant Hsp90α T5/7D has the same intrinsic chaperone activity as wild-type human Hsp90α in activation of GR steroid-binding activity by the five-protein machinery, supporting the conclusion that T5/7 phosphorylation does not affect Hsp90α chaperone activity.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Multimerização Proteica/fisiologia , Receptores de Glucocorticoides/metabolismo , Animais , Células HEK293 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP90/química , Humanos , Camundongos , Chaperonas Moleculares/química , Ligação Proteica/fisiologia , Receptores de Glucocorticoides/química
5.
Nature ; 457(7231): 910-4, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19212411

RESUMO

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.


Assuntos
Progressão da Doença , Metabolômica , Neoplasias da Próstata/metabolismo , Sarcosina/metabolismo , Androgênios/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Sarcosina/análise , Sarcosina/urina , Sarcosina Desidrogenase/metabolismo , Transdução de Sinais
6.
Nat Rev Cancer ; 6(11): 876-85, 2006 11.
Artigo em Inglês | MEDLINE | ID: mdl-17036041

RESUMO

Laboratory studies that led to the development of epidermal growth factor receptor (EGFR) inhibitors indicated that such inhibitors would be effective when given to patients with tumours that are driven by activated EGFR. However, initial clinical studies have shown modest responses to EGFR inhibitors when used alone, and it has not yet been possible to clearly identify which tumours will respond to this therapy. As a result, EGFR inhibitors are now used in combination with radiation therapy, chemotherapy and, more recently, with concurrent radiochemotherapy. In general, these clinical trials have been designed without much preclinical data. What do we need to know to make these combinations successful in the clinic?


Assuntos
Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Animais , Terapia Combinada , Modelos Animais de Doenças , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/fisiologia , Humanos
7.
J Biol Chem ; 288(37): 26879-86, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23897823

RESUMO

An eight-amino acid segment is known to be responsible for the marked difference in the rates of degradation of the EGF receptor (ErbB1) and ErbB2 upon treatment of cells with the Hsp90 inhibitor geldanamycin. We have scrambled the first six amino acids of this segment of the EGF receptor (EGFR), which lies in close association with the ATP binding cleft and the dimerization face. Scrambling these six amino acids markedly reduces EGFR stability, EGF-stimulated receptor dimerization, and autophosphorylation activity. Two peptides were synthesized as follows: one containing the wild-type sequence of the eight-amino acid segment, which we call Disruptin; and one with the scrambled sequence. Disruptin inhibits Hsp90 binding to the EGFR and causes slow degradation of the EGFR in two EGFR-dependent cancer cell lines, whereas the scrambled peptide is inactive. This effect is specific for EGFR versus other Hsp90 client proteins. In the presence of EGF, Disruptin, but not the scrambled peptide, inhibits EGFR dimerization and causes rapid degradation of the EGFR. In contrast to the Hsp90 inhibitor geldanamycin, Disruptin inhibits cancer cell growth by a nonapoptotic mechanism. Disruptin provides proof of concept for the development of a new class of anti-tumor drugs that specifically cause EGFR degradation.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Animais , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Dimerização , Desenho de Fármacos , Receptores ErbB/farmacologia , Humanos , Lactamas Macrocíclicas/farmacologia , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Ligação Proteica
8.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562773

RESUMO

Survival rates for non-small cell lung cancer (NSCLC) remain low despite the advent of novel therapeutics. Tyrosine kinase inhibitors (TKIs) targeting mutant epidermal growth factor receptor (EGFR) in NSCLC have significantly improved mortality but are plagued with challenges--they can only be used in the small fraction of patients who have susceptible driver mutations, and resistance inevitably develops. Aberrant glycosylation on the surface of cancer cells is an attractive therapeutic target as these abnormal glycosylation patterns are typically specific to cancer cells and are not present on healthy cells. H84T BanLec (H84T), a lectin previously engineered by our group to separate its antiviral activity from its mitogenicity, exhibits precision binding of high mannose, an abnormal glycan present on the surface of many cancer cells, including NSCLC. Here, we show that H84T binds to and inhibits the growth of diverse NSCLC cell lines by inducing lysosomal degradation of EGFR and leading to cancer cell death through autophagy. This is a mechanism distinct from EGFR TKIs and is independent of EGFR mutation status; H84T inhibited proliferation of both cell lines expressing wild type EGFR and those expressing mutant EGFR that is resistant to all TKIs. Further, H84T binds strongly to multiple and diverse clinical samples of both pulmonary adenocarcinoma and squamous cell carcinoma. H84T is thus a promising potential therapeutic in NSCLC, with the ability to circumvent the challenges currently faced by EGFR TKIs.

9.
Aging (Albany NY) ; 15(13): 6011-6030, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37399454

RESUMO

EGFR signaling initiates upon ligand binding which leads to activation and internalization of the receptor-ligand complex. Here, we evaluated if BUB1 impacted EGFR signaling by regulating EGFR receptor internalization and activation. BUB1 was ablated genomically (siRNA) or biochemically (2OH-BNPP1) in cells. EGF ligand was used to initiate EGFR signaling while disuccinimidyl suberate (DSS) was used for cross linking cellular proteins. EGFR signaling was measured by western immunoblotting and receptor internalization was evaluated by fluorescent microscopy (pEGFR (pY1068) colocalization with early endosome marker EEA1). siRNA mediated BUB1 depletion led to an overall increase in total EGFR levels and more phospho-EGFR (Y845, Y1092, and Y1173) dimers while the amount of total EGFR (non-phospho) dimers remained unchanged. BUB1 inhibitor (BUB1i) decreased EGF mediated EGFR signaling including pEGFR Y845, pAKT S473 and pERK1/2 in a time dependent manner. Additionally, BUB1i also reduced EGF mediated pEGFR (Y845) dimers (asymmetric dimers) without affecting total EGFR dimers (symmetric dimers) indicating that dimerization of inactive EGFR is not affected by BUB1. Furthermore, BUB1i blocked EGF mediated EGFR degradation (increase in EGFR half-life) without impacting half-lives of HER2 or c-MET. BUB1i also reduced co-localization of pEGFR with EEA1 positive endosomes suggesting that BUB1 might modulate EGFR endocytosis. Our data provide evidence that BUB1 protein and its kinase activity may regulate EGFR activation, endocytosis, degradation, and downstream signaling without affecting other members of the receptor tyrosine kinase family.


Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Ligantes , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo
10.
Head Neck ; 45(5): 1281-1287, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36932871

RESUMO

BACKGROUND: We sought to characterize early changes in CD8+ tumor-infiltrating lymphocytes and tumor transcriptomes after induction cetuximab in a cohort with p16-positive oropharyngeal cancer on a phase II clinical de-escalation trial. METHODS: Tumor biopsies were obtained before and 1 week after a single cetuximab loading dose in eight patients enrolled in a phase II trial of cetuximab and radiotherapy. Changes in CD8+ tumor-infiltrating lymphocytes and transcriptomes were assessed. RESULTS: One week after cetuximab, five patients (62.5%) had an increase in CD8+ cell infiltration with a median (range) fold change of +5.8 (2.5-15.8). Three (37.5%) had unchanged CD8+ cells (median [range] fold change of -0.85 [0.8-1.1]). In two patients with evaluable RNA, cetuximab induced rapid tumor transcriptome changes in cellular type 1 interferon signaling and keratinization pathways. CONCLUSIONS: Within 1 week, cetuximab induced measurable changes in pro-cytotoxic T-cell signaling and immune content.


Assuntos
Neoplasias Orofaríngeas , Humanos , Cetuximab/uso terapêutico , Neoplasias Orofaríngeas/patologia , Linfócitos T CD8-Positivos , Microambiente Tumoral
11.
Cell Rep ; 41(12): 111837, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543126

RESUMO

SAG/RBX2 is an E3 ligase, whereas SHOC2 is a RAS-RAF positive regulator. In this study, we address how Sag-Shoc2 crosstalk regulates pancreatic tumorigenesis induced by KrasG12D. Sag deletion increases the size of pancreas and causes the conversion of murine pancreatic intraepithelial neoplasms (mPanINs) to neoplastic cystic lesions with a mechanism involving Shoc2 accumulation, suggesting that Sag determines the pathological process via targeting Shoc2. Shoc2 deletion significantly inhibits pancreas growth, mPanIN formation, and acinar cell transdifferentiation, indicating that Shoc2 is essential for KrasG12D-induced pancreatic tumorigenesis. Likewise, in a primary acinar 3D culture, Sag deletion inhibits acinar-to-ductal transdifferentiation, while Shoc2 deletion significantly reduces the duct-like structures. Mechanistically, SAG is an E3 ligase that targets SHOC2 for degradation to affect both Mapk and mTorc1 pathways. Shoc2 deletion completely rescues the phenotype of neoplastic cystic lesions induced by Sag deletion, indicating physiological relevance of the Sag-Shoc2 crosstalk. Thus, the Sag-Shoc2 axis specifies the pancreatic tumor types induced by KrasG12D.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Transdução de Sinais , Neoplasias Pancreáticas/patologia , Pâncreas/metabolismo , Carcinoma in Situ/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Carcinogênese , Carcinoma Ductal Pancreático/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transformação Celular Neoplásica/patologia
12.
Anal Biochem ; 417(1): 57-64, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21693098

RESUMO

Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is commonly altered in different tumor types, leading to abnormally regulated kinase activity and excessive activation of downstream signaling cascades, including cell proliferation, differentiation, and migration. To investigate the EGFR signaling events in real time and in living cells and animals, here we describe a multidomain chimeric reporter whose bioluminescence can be used as a surrogate for EGFR kinase activity. This luciferase-based reporter was developed in squamous cell carcinoma cells (UMSCC1) to generate a cancer therapy model for imaging EGFR. The reporter is designed to act as a phosphorylated substrate of EGFR and reconstitutes luciferase activity when it is not phosphorylated, thereby providing a robust indication of EGFR inhibition. We validated the reporter in vitro and demonstrated that its activity could be differentially modulated by EGFR tyrosine kinase inhibition with erlotonib or receptor activation with epidermal growth factor. Further experiments in vivo demonstrated quantitative and dynamic monitoring of EGFR tyrosine kinase activity in xenograft. Results obtained from these studies provide unique insight into pharmacokinetics and pharmacodynamics of agents that modulate EGFR activity, revealing the usefulness of this reporter in evaluating drug availability and cell targeting in both living cells and mouse models.


Assuntos
Receptores ErbB/metabolismo , Imagem Molecular/métodos , Animais , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Genes Reporter , Humanos , Medições Luminescentes , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Especificidade por Substrato
13.
Transl Oncol ; 14(8): 101140, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34107419

RESUMO

Disruptin is a cell-permeable decoy peptide designed to destabilize activated EGFR, both by inhibiting Hsp90 chaperoning and dissociating the active asymmetric EGFR dimer, which leads to an increase in engagement of activated EGFR with the proteolytic degradation machinery and subsequent loss from the cells. Disruptin is an N-terminally biotinylated nonadecapeptide, with 8 amino acids from the αC-helix-ß4 sheet loop of EGFR (S767-C774) fused to a TAT undecapeptide. The S767-R775 loop is at the interface with juxtamembrane domains in the active EGFR dimers and is a binding site for Hsp90. Cellular studies in EGFR-activated tumor cells demonstrated that Disruptin causes the disappearance of EGFR protein from cells over a few hours, a growth inhibitory effect, similar but more effective than the EGFR kinase inhibition. Interestingly, cells without activated EGFR remained unaffected. In vivo studies showed that Disruptin slowed the growth of small tumors. Larger tumors responded to intratumoral injections but did not respond to systemic administration at tolerated doses. Investigation of these results revealed that systemic administration of Disruptin has acute toxicities, mainly related to its TAT peptide moiety. Therefore, we conclude that although the efficacy of both in vitro and in vivo intratumoral injection of Disruptin supports the therapeutic strategy of blocking activated EGFR dimerization, Disruptin is not suitable for further development. These studies also highlight the importance of the chosen models and drug-delivery methods for such investigations.

14.
Oncologist ; 15(4): 372-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20413642

RESUMO

Combined modality therapy emerged from preclinical data showing that carefully chosen drugs could enhance the sensitivity of tumor cells to radiation while having nonoverlapping toxicities. Recent advances in molecular biology involving the identification of cellular receptors, enzymes, and pathways involved in tumor growth and immortality have resulted in the development of biologically targeted drugs. This review highlights the recent clinical data in support of newer generation cytotoxic chemotherapies and systemic targeted agents in combination with radiation therapy.


Assuntos
Neoplasias/terapia , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Terapia Combinada/tendências , Receptores ErbB/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radiossensibilizantes/efeitos adversos , Radiossensibilizantes/uso terapêutico
15.
Neoplasia ; 22(4): 163-178, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143140

RESUMO

BUB1 (budding uninhibited by benzimidazoles-1) is required for efficient TGF-ß signaling, through its role in stabilizing the TGFBR1 and TGFBR2 complex. Here we demonstrate that TGFBR2 phosphorylates BUB1 at Serine-318, which is conserved in primates. S318 phosphorylation abrogates the interaction of BUB1 with TGFBR1 and SMAD2. Using BUB1 truncation domains (1-241, 241-482 and 482-723), we demonstrate that multiple contact points exist between BUB1 and TGF-ß signaling components and that these interactions are independent of the BUB1 tetratricopeptide repeat (TPR) domain. Moreover, substitutions in the middle domain (241-482) encompassing S318 reveals that efficient interaction with TGFBR2 occurs only in its dephosphorylated state (241-482 S318A). In contrast, the phospho-mimicking mutant (241-482 S318D) exhibits efficient binding with SMAD2 and its over-expression results in a decrease in TGFBR1-TGFBR2 and TGFBR1-SMAD2 interactions. These findings suggest that TGFBR2 mediated BUB1 phosphorylation at S318 may serve as a switch for the dissociation of the SMAD2-TGFBR complex, and therefore represents a regulatory event for TGF-ß signaling. Finally, we provide evidence that the BUB1-TGF-ß signaling axis may mediate aggressive phenotypes in a variety of cancers.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Serina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Receptor do Fator de Crescimento Transformador beta Tipo II/química , Fator de Crescimento Transformador beta/química
16.
Clin Cancer Res ; 26(19): 5246-5257, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718999

RESUMO

PURPOSE: Treatment approaches using Hsp90 inhibitors at their maximum tolerated doses (MTDs) have not produced selective tumor toxicity. Inhibition of Hsp90 activity causes degradation of client proteins including those involved in recognizing and repairing DNA lesions. We hypothesized that if DNA repair proteins were degraded by concentrations of an Hsp90 inhibitor below those required to cause nonspecific cytotoxicity, significant tumor-selective radiosensitization might be achieved. EXPERIMENTAL DESIGN: Tandem mass tagged-mass spectrometry was performed to determine the effect of a subcytotoxic concentration of the Hsp90 inhibitor, AT13387 (onalespib), on global protein abundance. The effect of AT13387 on in vitro radiosensitization was assessed using a clonogenic assay. Pharmacokinetics profiling was performed in mice bearing xenografts. Finally, the effect of low-dose AT13387 on the radiosensitization of three tumor models was assessed. RESULTS: A subcytotoxic concentration of AT13387 reduced levels of DNA repair proteins, without affecting the majority of Hsp90 clients. The pharmacokinetics study using one-third of the MTD showed 40-fold higher levels of AT13387 in tumors compared with plasma. This low dose enhanced Hsp70 expression in peripheral blood mononuclear cells (PBMCs), which is a biomarker of Hsp90 inhibition. Low dose monotherapy was ineffective, but when combined with radiotherapy, produced significant tumor growth inhibition. CONCLUSIONS: This study shows that a significant therapeutic ratio can be achieved by a low dose of Hsp90 inhibitor in combination with radiotherapy. Hsp90 inhibition, even at a low dose, can be monitored by measuring Hsp70 expression in PBMCs in human studies.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/administração & dosagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Animais , Benzamidas/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/genética , Xenoenxertos , Humanos , Isoindóis/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , Tolerância a Radiação/genética , Radiossensibilizantes/efeitos adversos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
17.
Transl Oncol ; 12(2): 209-216, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30412912

RESUMO

INTRODUCTION: C-Met plays important roles in treatment resistance, tumor invasion, and metastasis. In this study, we used a small molecule inhibitor of c-Met, crizotinib, in cetuximab-resistant, mutant KRAS-driven colorectal cancer cell lines and assessed radiosensitization. MATERIALS AND METHODS: A tissue microarray containing colorectal tumors was used to study the relationship between KRAS mutations and c-Met expression. For in vivo studies, we used the KRAS mutant cell lines HCT116, DLD1, and LoVo. Colony formation assays were performed to assess the effects of crizotinib and cetuximab. Immunoblot analysis was used to determine the effect of crizotinib on c-Met and downstream pathways and DNA damage response. We then selected noncytotoxic doses of crizotinib to assess clonogenic survival with radiation. To study potential mechanisms of radiosensitization, cell cycle analysis was performed using flow cytometry. RESULTS: Analysis of the tissue microarray revealed that KRAS mutant tumors had active c-Met signaling. KRAS mutant cell lines LoVo, HCT116, and DLD1 were resistant to cetuximab but sensitive to crizotinib. Pretreatment with crizotinib for 24 hours radiosensitized LoVo, DLD1, and HCT116 cell lines with enhancement ratios of 1.54, 1.23, and 1.30, respectively. Immunoblot analysis showed that crizotinib blocked radiation-induced c-Met phosphorylation and attenuated downstream signaling pathways. Cell cycle analysis revealed minimal G1 arrest with crizotinib. Additionally, crizotinib completely blocked HGF induced cell migration. CONCLUSIONS: Inhibition of c-Met with crizotinib effectively sensitizes cetuximab-resistant KRAS mutant colorectal cancer cell lines to radiation. Crizotinib has the potential to improve outcomes in locally advanced rectal cancer patients undergoing chemoradiation.

18.
Clin Cancer Res ; 13(8): 2512-8, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17438112

RESUMO

PURPOSE: To optimally integrate epidermal growth factor receptor (EGFR) inhibitors into the clinical treatment of head and neck cancer, two important questions must be answered: (a) does EGFR inhibition add to the effects of radiochemotherapy, and (b) if so, which method of inhibiting EGFR is superior (an EGFR antibody versus a small molecule tyrosine kinase inhibitor)? We designed an in vivo study to address these questions. EXPERIMENTAL DESIGN: Nude mice with UMSCC-1 head and neck cancer xenografts received either single, double, or triple agent therapy with an EGFR inhibitor (either cetuximab or gefitinib), gemcitabine, and/or radiation for 3 weeks. Tumor volumes and animal weights were measured for up to 15 weeks. Immunoblotting and immunofluorescent staining were done on tumors treated with either cetuximab or gefitinib alone. RESULTS: The addition of an EGFR inhibitor significantly delayed the tumor volume doubling time, from a median of 40 days with radiochemotherapy (gemcitabine and radiation) alone, to 106 days with cetuximab and 66 days with gefitinib (both P < 0.005). Cetuximab resulted in significantly less weight loss than gefitinib. Immunoblot analysis and immunofluorescent staining of tumors show that although levels of phosphorylated AKT and extracellular signal-regulated kinase were decreased similarly in response to cetuximab or gefitinib, cetuximab caused prolonged suppression of pEGFR, pSTAT3, and Bcl(XL) compared with gefitinib. CONCLUSIONS: EGFR inhibition, particularly with cetuximab, improves the effectiveness of radiochemotherapy in this model of head and neck cancer. The correlation of response with prolonged suppression of EGFR, STAT3, and Bcl(XL) offers the possibility that these may be candidate biomarkers for response.


Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Cetuximab , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Gefitinibe , Camundongos , Camundongos Nus , Quinazolinas/uso terapêutico , Ratos , Transplante Heterólogo , Gencitabina
19.
Cancer Res ; 66(2): 981-8, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16424033

RESUMO

Although the combination of gemcitabine and radiation produces a high frequency of complete responses in the treatment of locally advanced head and neck cancer, substantial toxicity suggests that an improvement in the therapeutic index is required. The purpose of this study was to determine if gefitinib could improve the efficacy of gemcitabine and if drug schedule is important. We hypothesized that gemcitabine followed by gefitinib would be superior to the opposite order because of both cell cycle and growth factor signaling interactions. Using UMSCC-1 cells in vitro, we confirmed that gefitinib arrested cells in G(1) and suppressed phospho-epidermal growth factor receptor (p(Y845)EGFR) and that gemcitabine arrested cells in S phase and stimulated p(Y845)EGFR. The schedule of gemcitabine followed by gefitinib caused arrest of cells in S phase. Gefitinib suppressed gemcitabine-mediated p(Y845)EGFR stimulation. This schedule caused decreased p(S473)AKT, increased poly(ADP-ribose) polymerase cleavage, and increased apoptosis compared with gemcitabine alone. The schedule of gefitinib followed by gemcitabine also caused suppression of p(Y845)EGFR but arrested cells in G(1). This schedule in which gefitinib was used first was associated with stable levels of p(S473)AKT and minimal poly(ADP-ribose) polymerase cleavage and apoptosis. These results were reflected in experiments in nude mice bearing UMSCC-1 xenografts, in which there was greater tumor regression and apoptosis when animals received gemcitabine followed by gefitinib during the first week of therapy. These findings suggest that the schedule of gemcitabine followed by gefitinib may increase the therapeutic index over gemcitabine alone and, combined with clinical data, encourage exploration of combination of gemcitabine, EGFR inhibitors, and radiation.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Desoxicitidina/análogos & derivados , Neoplasias de Cabeça e Pescoço/patologia , Quinazolinas/farmacologia , Antibióticos Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Esquema de Medicação , Interações Medicamentosas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/biossíntese , Gefitinibe , Humanos , Células Tumorais Cultivadas , Gencitabina
20.
Cancer Res ; 66(24): 11554-9, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17178844

RESUMO

Ataxia telangiectasia mutated (ATM) kinase plays a crucial role in the cellular response to DNA damage and in radiation resistance. Although much effort has focused on the relationship between ATM and other nuclear signal transducers, little is known about interactions between ATM and mitogenic signaling pathways. In this study, we show a novel relationship between ATM kinase and extracellular signal-regulated kinase 1/2 (ERK1/2), a key mitogenic stimulator. Activation of ATM by radiation down-regulates phospho-ERK1/2 and its downstream signaling via increased expression of mitogen-activated protein kinase phosphatase MKP-1 in both cell culture and tumor models. This dephosphorylation of ERK1/2 is independent of epidermal growth factor receptor (EGFR) activity and is associated with radioresistance. These findings show a new function for ATM in the control of mitogenic pathways affecting cell signaling and emphasize the key role of ATM in coordinating the cellular response to DNA damage.


Assuntos
Antígenos de Diferenciação/genética , Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/efeitos da radiação , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/efeitos da radiação , Glicoproteínas de Membrana/genética , Moléculas de Adesão de Célula Nervosa/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/efeitos da radiação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/efeitos da radiação , Receptores Imunológicos/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Replicação do DNA , Fosfatase 1 de Especificidade Dupla , Ativação Enzimática , Humanos , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase , Proteína Fosfatase 1 , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA