Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 142(2): 024703, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591373

RESUMO

In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

2.
J Chem Phys ; 142(2): 024704, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591374

RESUMO

The generalized optical interference model for interfacial contributions to vibrational sum frequency generation (VSFG) spectroscopic signals from organic thin film systems is extended to include a description of optical interferences contained in the thin film bulk response. This is based on electric quadrupolar interactions with the input fields and includes a discussion on possible contribution from the electric quadrupolar polarization. VSFG data from the first of this two part report are analyzed and include effects from higher order responses, for both bulk and higher order interfacial terms. The results indicate that although it is capable of capturing many of the data features, the electric dipole treatment is likely not a complete description of the VSFG intensity data from this system. An analysis based on the signs of the resulting response amplitudes is used to deduce the relative magnitude of the electric dipole and higher order interfacial terms. It is found that the buried interface is closer to satisfying the electric dipole approximation, consistent with smaller field gradients due to closer index matching between the organic thin film and substrate relative to air. The procedure outlined in this work allows for the difficult task of deducing a physical picture of average molecular orientation at the buried interface of a multilayer organic thin film system while including higher order effects.

3.
J Chem Phys ; 138(15): 154708, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23614437

RESUMO

In the field of surface-specific vibrational sum frequency generation spectroscopy (VSFG) on organic thin films, optical interferences combined with the two-interface problem presents a challenge in terms of qualitative assessment of the data and quantitative modeling. The difficulty is amplified when considering systems comprised of more than a single material thin film layer. Recently, in our lab we have developed a generalized model that describes thin film interference in interface-specific nonlinear optical spectroscopies from arbitrary multilayer systems. Here, we apply the model to simulate VSFG spectra from the simplest multilayer: a system of two thin films, one of which is an organic small molecule and the other is a dielectric layer on a semiconductor substrate system where we idealize that the organic interfaces are equally VSFG active. Specifically, we consider the molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) deposited on a silicon wafer with a thermally grown oxide dielectric. We present results for the four polarization experiments that sample the nonzero nonlinear susceptibility elements of macroscopically centrosymmetric materials (ssp, sps, pss, and ppp) and in two mIR frequency windows (the imide carbonyl stretches around 1680 cm(-1) and the alkyl stretches around 2900 cm(-1)) as a function of both thin film thicknesses with fixed input beam angles. We use frequency dependent refractive indices for all materials. The goal is to illustrate some of the intricacies contained in the intensity data of such systems. Of particular interest is the effect of the relative polar orientation of modes at the interfaces and the possibility of designing a system where the collected signal is exclusively attributable to a single interface. Our calculations indicate that in order to unambiguously identify the relative polar orientation one must experimentally vary an additional system parameter such as thin film thickness or input beam angle and for quantitative modeling one cannot ignore either interfacial contribution. The results show that proper modeling of thin film interference effects is essential for accurate data analysis and should include the frequency dependent refractive indices, especially for modes with larger mIR absorption cross sections, even when absorptive losses are small.

4.
Langmuir ; 27(22): 13940-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21970750

RESUMO

Vibrational sum frequency generation (VSFG) spectroscopy was used in conjunction with steady-state IR spectroscopy, atomic force microscopy (AFM), and spectroscopic ellipsometry to characterize organic semiconductor thin films that were vapor deposited on silica- and trimethoxy(octadecyl)silane (ODTMS)-functionalized silica surfaces. The growth of perylene derivative N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C(8)) was found to proceed differently on simple glass slides relative to that of native oxide on silicon and fused quartz slides. VSFG was applied to these samples to isolate structural changes that occurred specifically at the buried interface between the organic semiconductor and the silica dielectric upon thermal annealing. A model was introduced to globally fit the imide carbonyl symmetric and asymmetric interfacial spectra that included contributions from both inner and outer interfaces. The fits to the VSFG data and AFM topographic images revealed significant reordering at the outer interface on all substrates upon thermal annealing. Within the model, the spectroscopic data reported that the inner interfacial PTCDI-C(8) monolayer reoriented to a more reclined phase on bare substrates after annealing but remained essentially unchanged on ODTMS monolayers. Electrical characterization of PTCDI-C(8) field-effect transistors indicated that electron mobilities were higher on bare substrate devices but could be improved by a factor of 2 on both surface types by thermal annealing. The mobility effects were attributed to the annealing-driven coalescence of PTCDI-C(8) grain boundaries. Consistent with previous structural reports, the molecular rearrangements of the first monolayer of PTCDI-C(8) on bare substrates that were reported by VSFG spectroscopy had a noticeable impact on the device performance.

5.
J Phys Chem Lett ; 7(1): 62-8, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26654548

RESUMO

Optical interference effects can be a nuisance in spectroscopy, especially in nonlinear experiments in which multiple incoming and outgoing beams are present. Vibrational sum frequency generation is particularly susceptible to interference effects because it is often applied to planar, layered materials, driving many of its practitioners to great lengths to avoid signal generation from multiple interfaces. In this perspective, we take a positive view of this metaphorical "lemon" and demonstrate how optical interference can be used as a tool to extract subtle changes in interfacial vibrational spectra. Specifically, we use small frequency shifts at a buried interface in an organic field-effect transistor to determine the fractional charge per molecule during device operation. The transfer matrix approach to nonlinear signal modeling is general and readily applied to complex layered samples that are increasingly popular in modern studies. More importantly, we show that a failure to consider interference effects can lead to erroneous interpretations of nonlinear data.


Assuntos
Luz , Modelos Teóricos , Análise Espectral/métodos , Análise Espectral/normas , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA