Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(6): 2698-2721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744971

RESUMO

Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Ciclo Celular , Centríolos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Centríolos/metabolismo , Fosforilação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo , Sequência de Aminoácidos , Proteínas Quinases
2.
EMBO J ; 40(5): e106228, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258165

RESUMO

Nucleoprotein (N) is an immunodominant antigen in many enveloped virus infections. While the diagnostic value of anti-N antibodies is clear, their role in immunity is not. This is because while they are non-neutralising, they somehow clear infection by coronavirus, influenza and LCMV in vivo. Here, we show that anti-N immune protection is mediated by the cytosolic Fc receptor and E3 ubiquitin ligase TRIM21. Exploiting LCMV as a model system, we demonstrate that TRIM21 uses anti-N antibodies to target N for cytosolic degradation and generate cytotoxic T cells (CTLs) against N peptide. These CTLs rapidly eliminate N-peptide-displaying cells and drive efficient viral clearance. These results reveal a new mechanism of immune synergy between antibodies and T cells and highlights N as an important vaccine target.


Assuntos
Anticorpos Antivirais/imunologia , Imunidade Celular , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas do Nucleocapsídeo/imunologia , Ribonucleoproteínas/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Knockout , Proteínas do Nucleocapsídeo/genética , Ribonucleoproteínas/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
3.
Mol Psychiatry ; 29(4): 1128-1138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351171

RESUMO

Bipolar disorder is a severe neuro-psychiatric condition where genome-wide association and sequencing studies have pointed to dysregulated gene expression as likely to be causal. We observed strong correlation in expression between GWAS-associated genes and hypothesised that healthy function depends on balance in the relative expression levels of the associated genes and that patients display stoichiometric imbalance. We developed a method for quantifying stoichiometric imbalance and used this to predict each sample's diagnosis probability in four cortical brain RNAseq datasets. The percentage of phenotypic variance on the liability-scale explained by these probabilities ranged from 10.0 to 17.4% (AUC: 69.4-76.4%) which is a multiple of the classification performance achieved using absolute expression levels or GWAS-based polygenic risk scores. Most patients display stoichiometric imbalance in three to ten genes, suggesting that dysregulation of only a small fraction of associated genes can trigger the disorder, with the identity of these genes varying between individuals.


Assuntos
Transtorno Bipolar , Encéfalo , Estudo de Associação Genômica Ampla , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Expressão Gênica/genética , Masculino , Feminino , Autopsia/métodos , Herança Multifatorial/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Pessoa de Meia-Idade
4.
PLoS Genet ; 18(5): e1010161, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35560157

RESUMO

Epidemiological and clinical studies have found associations between depression and cardiovascular disease risk factors, and coronary artery disease patients with depression have worse prognosis. The genetic relationship between depression and these cardiovascular phenotypes is not known. We here investigated overlap at the genome-wide level and in individual loci between depression, coronary artery disease and cardiovascular risk factors. We used the bivariate causal mixture model (MiXeR) to quantify genome-wide polygenic overlap and the conditional/conjunctional false discovery rate (pleioFDR) method to identify shared loci, based on genome-wide association study summary statistics on depression (n = 450,619), coronary artery disease (n = 502,713) and nine cardiovascular risk factors (n = 204,402-776,078). Genetic loci were functionally annotated using FUnctional Mapping and Annotation (FUMA). Of 13.9K variants influencing depression, 9.5K (SD 1.0K) were shared with body-mass index. Of 4.4K variants influencing systolic blood pressure, 2K were shared with depression. ConjFDR identified 79 unique loci associated with depression and coronary artery disease or cardiovascular risk factors. Six genomic loci were associated jointly with depression and coronary artery disease, 69 with blood pressure, 49 with lipids, 9 with type 2 diabetes and 8 with c-reactive protein at conjFDR < 0.05. Loci associated with increased risk for depression were also associated with increased risk of coronary artery disease and higher total cholesterol, low-density lipoprotein and c-reactive protein levels, while there was a mixed pattern of effect direction for the other risk factors. Functional analyses of the shared loci implicated metabolism of alpha-linolenic acid pathway for type 2 diabetes. Our results showed polygenic overlap between depression, coronary artery disease and several cardiovascular risk factors and suggest molecular mechanisms underlying the association between depression and increased cardiovascular disease risk.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Proteína C-Reativa/genética , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/genética , Depressão/genética , Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
5.
PLoS Genet ; 18(4): e1009799, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377871

RESUMO

Centrioles are submicron-scale, barrel-shaped organelles typically found in pairs, and play important roles in ciliogenesis and bipolar spindle assembly. In general, successful execution of centriole-dependent processes is highly reliant on the ability of the cell to stringently control centriole number. This in turn is mainly achieved through the precise duplication of centrioles during each S phase. Aberrations in centriole duplication disrupt spindle assembly and cilia-based signaling and have been linked to cancer, primary microcephaly and a variety of growth disorders. Studies aimed at understanding how centriole duplication is controlled have mainly focused on the post-translational regulation of two key components of this pathway: the master regulatory kinase ZYG-1/Plk4 and the scaffold component SAS-6. In contrast, how transcriptional control mechanisms might contribute to this process have not been well explored. Here we show that the chromatin remodeling protein CHD-1 contributes to the regulation of centriole duplication in the C. elegans embryo. Specifically, we find that loss of CHD-1 or inactivation of its ATPase activity can restore embryonic viability and centriole duplication to a strain expressing insufficient ZYG-1 activity. Interestingly, loss of CHD-1 is associated with increases in the levels of two ZYG-1-binding partners: SPD-2, the centriole receptor for ZYG-1 and SAS-6. Finally, we explore transcriptional regulatory networks governing centriole duplication and find that CHD-1 and a second transcription factor, EFL-1/DPL-1 cooperate to down regulate expression of CDK-2, which in turn promotes SAS-6 protein levels. Disruption of this regulatory network results in the overexpression of SAS-6 and the production of extra centrioles.


Assuntos
Proteínas de Caenorhabditis elegans , Centríolos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Centríolos/genética , Centríolos/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Quinases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Brain ; 146(8): 3392-3403, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757824

RESUMO

Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Epilepsias Parciais , Epilepsia Generalizada , Humanos , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Epilepsias Parciais/genética , Genômica , Epilepsia Generalizada/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Health Commun ; : 1-9, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567512

RESUMO

A timely response to patient-initiated telephone calls can affect many aspects of patient health, including quality of care and health equity. Historically, at a family medicine residency clinic, at least 1 out of 4 patient calls remained unresolved three days after the call was placed. We sought to explore whether there were differential delays in resolution of patient concerns for certain groups and how these were affected by quality improvement interventions to increase responsiveness to patient calls. A multidisciplinary team at a primary care residency clinic applied Lean education and tools to improve the timeliness of addressing telephone encounters. Telephone encounter data were obtained for one year before and nine months after the intervention. Data were stratified by race, ethnicity, preferred language, sex, online portal activation status, age category, zip code, patient risk category, and reason for call. Stratified data revealed consistently worse performance on telephone encounter closure by 72 hours for Black/African American patients compared to Hispanic and non-Hispanic White patients pre-intervention. Interventions resulted in statistically significant overall improvement, with an OR of 2.9 (95% CI: 2.62 to 3.21). Though interventions did not target a specific population, pre-intervention differences based on race and ethnicity resolved post-intervention. Telephone calls serve as an important means of patient communication with care teams. General interventions to improve the timeliness of addressing telephone encounters can lead to sustainable improvement in a primary care academic clinic and may also alleviate disparities.

8.
Mol Psychiatry ; 27(12): 5167-5176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100668

RESUMO

Patients with schizophrenia have consistently shown brain volumetric abnormalities, implicating both etiological and pathological processes. However, the genetic relationship between schizophrenia and brain volumetric abnormalities remains poorly understood. Here, we applied novel statistical genetic approaches (MiXeR and conjunctional false discovery rate analysis) to investigate genetic overlap with mixed effect directions using independent genome-wide association studies of schizophrenia (n = 130,644) and brain volumetric phenotypes, including subcortical brain and intracranial volumes (n = 33,735). We found brain volumetric phenotypes share substantial genetic variants (74-96%) with schizophrenia, and observed 107 distinct shared loci with sign consistency in independent samples. Genes mapped by shared loci revealed (1) significant enrichment in neurodevelopmental biological processes, (2) three co-expression clusters with peak expression at the prenatal stage, and (3) genetically imputed thalamic expression of CRHR1 and ARL17A was associated with the thalamic volume as early as in childhood. Together, our findings provide evidence of shared genetic architecture between schizophrenia and brain volumetric phenotypes and suggest that altered early neurodevelopmental processes and brain development in childhood may be involved in schizophrenia development.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Encéfalo/patologia , Fenótipo , Tálamo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Loci Gênicos
9.
Brain ; 145(1): 142-153, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34273149

RESUMO

Migraine is three times more prevalent in people with bipolar disorder or depression. The relationship between schizophrenia and migraine is less certain although glutamatergic and serotonergic neurotransmission are implicated in both. A shared genetic basis to migraine and mental disorders has been suggested but previous studies have reported weak or non-significant genetic correlations and five shared risk loci. Using the largest samples to date and novel statistical tools, we aimed to determine the extent to which migraine's polygenic architecture overlaps with bipolar disorder, depression and schizophrenia beyond genetic correlation, and to identify shared genetic loci. Summary statistics from genome-wide association studies were acquired from large-scale consortia for migraine (n cases = 59 674; n controls = 316 078), bipolar disorder (n cases = 20 352; n controls = 31 358), depression (n cases = 170 756; n controls = 328 443) and schizophrenia (n cases = 40 675, n controls = 64 643). We applied the bivariate causal mixture model to estimate the number of disorder-influencing variants shared between migraine and each mental disorder, and the conditional/conjunctional false discovery rate method to identify shared loci. Loci were functionally characterized to provide biological insights. Univariate MiXeR analysis revealed that migraine was substantially less polygenic (2.8 K disorder-influencing variants) compared to mental disorders (8100-12 300 disorder-influencing variants). Bivariate analysis estimated that 800 (SD = 300), 2100 (SD = 100) and 2300 (SD = 300) variants were shared between bipolar disorder, depression and schizophrenia, respectively. There was also extensive overlap with intelligence (1800, SD = 300) and educational attainment (2100, SD = 300) but not height (1000, SD = 100). We next identified 14 loci jointly associated with migraine and depression and 36 loci jointly associated with migraine and schizophrenia, with evidence of consistent genetic effects in independent samples. No loci were associated with migraine and bipolar disorder. Functional annotation mapped 37 and 298 genes to migraine and each of depression and schizophrenia, respectively, including several novel putative migraine genes such as L3MBTL2, CACNB2 and SLC9B1. Gene-set analysis identified several putative gene sets enriched with mapped genes including transmembrane transport in migraine and schizophrenia. Most migraine-influencing variants were predicted to influence depression and schizophrenia, although a minority of mental disorder-influencing variants were shared with migraine due to the difference in polygenicity. Similar overlap with other brain-related phenotypes suggests this represents a pool of 'pleiotropic' variants that influence vulnerability to diverse brain-related disorders and traits. We also identified specific loci shared between migraine and each of depression and schizophrenia, implicating shared molecular mechanisms and highlighting candidate migraine genes for experimental validation.


Assuntos
Transtornos Mentais , Transtornos de Enxaqueca , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/genética , Transtornos de Enxaqueca/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
10.
Addict Biol ; 28(6): e13282, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252880

RESUMO

Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity and mortality. The causes underlying this relationship are poorly understood. Although these conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse summary statistics from independent genome wide association studies of OUD, schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we characterized the identified shared loci using biological annotation resources. OUD data were obtained from the Million Veteran Program, Yale-Penn and Study of Addiction: Genetics and Environment (SAGE) (15 756 cases, 99 039 controls). SCZ (53 386 cases, 77 258 controls), BD (41 917 cases, 371 549 controls) and MD (170 756 cases, 329 443 controls) data were provided by the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification of 14 novel OUD loci at condFDR < 0.05 and 7 unique loci shared between OUD and SCZ (n = 2), BD (n = 2) and MD (n = 7) at conjFDR < 0.05 with concordant effect directions, in line with estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD) and at the major histocompatibility complex region (SCZ and MD). Our findings provide new insights into the shared genetic architecture between OUD and SCZ, BD and MD, indicating a complex genetic relationship, suggesting overlapping neurobiological pathways.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Depressão , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Loci Gênicos
11.
Acta Neuropsychiatr ; : 1-8, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37612147

RESUMO

BACKGROUND: The corpus callosum (CC) is a brain structure with a high heritability and potential role in psychiatric disorders. However, the genetic architecture of the CC and the genetic link with psychiatric disorders remain largely unclear. We investigated the genetic architectures of the volume of the CC and its subregions and the genetic overlap with psychiatric disorders. METHODS: We applied multivariate genome-wide association study (GWAS) to genetic and T1-weighted magnetic resonance imaging (MRI) data of 40,894 individuals from the UK Biobank, aiming to boost genetic discovery and to assess the pleiotropic effects across volumes of the five subregions of the CC (posterior, mid-posterior, central, mid-anterior and anterior) obtained by FreeSurfer 7.1. Multivariate GWAS was run combining all subregions, co-varying for relevant variables. Gene-set enrichment analyses were performed using MAGMA. Linkage disequilibrium score regression (LDSC) was used to determine Single nucleotide polymorphism (SNP)-based heritability of total CC volume and volumes of its subregions as well as their genetic correlations with relevant psychiatric traits. RESULTS: We identified 70 independent loci with distributed effects across the five subregions of the CC (p < 5 × 10-8). Additionally, we identified 33 significant loci in the anterior subregion, 23 in the mid-anterior, 29 in the central, 7 in the mid-posterior and 56 in the posterior subregion. Gene-set analysis revealed 156 significant genes contributing to volume of the CC subregions (p < 2.6 × 10-6). LDSC estimated the heritability of CC to (h2SNP = 0.38, SE = 0.03) and subregions ranging from 0.22 (SE = 0.02) to 0.37 (SE = 0.03). We found significant genetic correlations of total CC volume with bipolar disorder (BD, rg = -0.09, SE = 0.03; p = 5.9 × 10-3) and drinks consumed per week (rg = -0.09, SE = 0.02; p = 4.8 × 10-4), and volume of the mid-anterior subregion with BD (rg = -0.12, SE = 0.02; p = 2.5 × 10-4), major depressive disorder (MDD) (rg = -0.12, SE = 0.04; p = 3.6 × 10-3), drinks consumed per week (rg = -0.13, SE = 0.04; p = 1.8 × 10-3) and cannabis use (rg = -0.09, SE = 0.03; p = 8.4 × 10-3). CONCLUSIONS: Our results demonstrate that the CC has a polygenic architecture implicating multiple genes and show that CC subregion volumes are heritable. We found that distinct genetic factors are involved in the development of anterior and posterior subregions, consistent with their divergent functional specialisation. Significant genetic correlation between volumes of the CC and BD, drinks per week, MDD and cannabis consumption subregion volumes with psychiatric traits is noteworthy and deserving of further investigation.

12.
PLoS Pathog ; 16(8): e1008732, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750093

RESUMO

Rotavirus is a major cause of gastroenteritis in children, with infection typically inducing high levels of protective antibodies. Antibodies targeting the middle capsid protein VP6 are particularly abundant, and as VP6 is only exposed inside cells, neutralisation must be post-entry. However, while a system of poly immune globulin receptor (pIgR) transcytosis has been proposed for anti-VP6 IgAs, the mechanism by which VP6-specific IgG mediates protection remains less clear. We have developed an intracellular neutralisation assay to examine how antibodies neutralise rotavirus inside cells, enabling comparison between IgG and IgA isotypes. Unexpectedly we found that neutralisation by VP6-specific IgG was much more efficient than by VP6-specific IgA. This observation was highly dependent on the activity of the cytosolic antibody receptor TRIM21 and was confirmed using an in vivo model of murine rotavirus infection. Furthermore, mice deficient in only IgG and not other antibody isotypes had a serious deficit in intracellular antibody-mediated protection. The finding that VP6-specific IgG protect mice against rotavirus infection has important implications for rotavirus vaccination. Current assays determine protection in humans predominantly by measuring rotavirus-specific IgA titres. Measurements of VP6-specific IgG may add to existing mechanistic correlates of protection.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Imunoglobulina G/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/fisiologia , Animais , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Rotavirus/genética , Infecções por Rotavirus/virologia , Especificidade da Espécie
13.
Brain Behav Immun ; 99: 299-306, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758379

RESUMO

BACKGROUND: Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental illnesses (SMI) that are part of a psychosis continuum, and dysregulated innate immune responses have been suggested to be involved in their pathophysiology. However, disease-specific immune mechanisms in SMI are not known yet. Recently, dyslipidemia has been linked to systemic inflammasome activation, and elevated atherogenic lipid ratios have been shown to correlate with circulating levels of inflammatory biomarkers in SMI. It is, however, not yet known if increased systemic cholesterol load leads to inflammasome activation in these patients. METHODS: We tested the hypothesis that patients with SCZ and BD display higher circulating levels compared to healthy individuals of key members of the IL-18 system using a large patient cohort (n = 1632; including 737 SCZ and 895 BD), and healthy controls (CTRL; n = 1070). In addition, we assessed associations with coronary artery disease risk factors in SMI, focusing on relevant inflammasome-related, neuroendocrine, and lipid markers. RESULTS: We report higher baseline levels of circulating IL-18 system components (IL-18, IL-18BPA, IL-18R1), and increased expression of inflammasome-related genes (NLRP3 and NLRC4) in the blood of patients relative to CTRL. We demonstrate a cholesterol dyslipidemia pattern in psychotic disorders, and report correlations between levels of blood cholesterol types and the expression of inflammasome system elements in SMI. CONCLUSIONS: Based on these results, we suggest a role for inflammasome activation/dysregulation in SMI. Our findings further the understanding of possible underlying inflammatory mechanisms and may expose important therapeutic targets in SMI.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
14.
Mol Psychiatry ; 26(8): 4055-4065, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31792363

RESUMO

Differential diagnosis between childhood onset attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) remains a challenge, mainly due to overlapping symptoms and high rates of comorbidity. Despite this, genetic correlation reported for these disorders is low and non-significant. Here we aimed to better characterize the genetic architecture of these disorders utilizing recent large genome-wide association studies (GWAS). We analyzed independent GWAS summary statistics for ADHD (19,099 cases and 34,194 controls) and BD (20,352 cases and 31,358 controls) applying the conditional/conjunctional false discovery rate (condFDR/conjFDR) statistical framework that increases the power to detect novel phenotype-specific and shared loci by leveraging the combined power of two GWAS. We observed cross-trait polygenic enrichment for ADHD conditioned on associations with BD, and vice versa. Leveraging this enrichment, we identified 19 novel ADHD risk loci and 40 novel BD risk loci at condFDR <0.05. Further, we identified five loci jointly associated with ADHD and BD (conjFDR < 0.05). Interestingly, these five loci show concordant directions of effect for ADHD and BD. These results highlight a shared underlying genetic risk for ADHD and BD which may help to explain the high comorbidity rates and difficulties in differentiating between ADHD and BD in the clinic. Improving our understanding of the underlying genetic architecture of these disorders may aid in the development of novel stratification tools to help reduce these diagnostic difficulties.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Bipolar , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Bipolar/genética , Criança , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
15.
Am J Med Genet B Neuropsychiatr Genet ; 189(6): 207-218, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35841185

RESUMO

Recent genome-wide association studies of mood instability (MOOD) have found significant positive genetic correlation with major depression (DEP) and weak correlations with other psychiatric disorders. We investigated the polygenic overlap between MOOD and psychiatric disorders beyond genetic correlation to better characterize putative shared genetic determinants. GWAS summary statistics for schizophrenia (SCZ, n = 105,318), bipolar disorder (BIP, n = 413,466), DEP (n = 450,619), attention-deficit hyperactivity disorder (ADHD, n = 53,293), and MOOD (n = 363,705) were analyzed using the bivariate causal mixture model and conjunctional false discovery rate methods. MOOD correlated positively with all psychiatric disorders, but with wide variation in strength (rg = 0.10-0.62). Of 10.4 K genomic variants influencing MOOD, 4 K-9.4 K influenced psychiatric disorders. Furthermore, MOOD was jointly associated with DEP at 163 loci, SCZ at 110, BIP at 60 and ADHD at 25. Fifty-three jointly associated loci were overlapping across two or more disorders, seven of which had discordant effect directions on psychiatric disorders. Genes mapped to loci associated with MOOD and all four disorders were enriched in a single gene-set, "synapse organization." The extensive polygenic overlap indicates shared molecular underpinnings across MOOD and psychiatric disorders. However, distinct patterns of genetic correlation and effect directions may relate to differences in the core clinical features of each disorder.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética
16.
Bioinformatics ; 36(18): 4749-4756, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539089

RESUMO

MOTIVATION: Determining the relative contributions of functional genetic categories is fundamental to understanding the genetic etiology of complex human traits and diseases. Here, we present Annotation Informed-MiXeR, a likelihood-based method for estimating the number of variants influencing a phenotype and their effect sizes across different functional annotation categories of the genome using summary statistics from genome-wide association studies. RESULTS: Extensive simulations demonstrate that the model is valid for a broad range of genetic architectures. The model suggests that complex human phenotypes substantially differ in the number of causal variants, their localization in the genome and their effect sizes. Specifically, the exons of protein-coding genes harbor more than 90% of variants influencing type 2 diabetes and inflammatory bowel disease, making them good candidates for whole-exome studies. In contrast, <10% of the causal variants for schizophrenia, bipolar disorder and attention-deficit/hyperactivity disorder are located in protein-coding exons, indicating a more substantial role of regulatory mechanisms in the pathogenesis of these disorders. AVAILABILITY AND IMPLEMENTATION: The software is available at: https://github.com/precimed/mixer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/genética , Humanos , Funções Verossimilhança , Fenótipo , Software
17.
Pharmacogenomics J ; 21(5): 574-585, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33824429

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are prescribed both to patients with schizophrenia and bipolar disorder. Previous studies have shown associations between SSRI treatment and cardiometabolic alterations. The aim of the present study was to investigate genetic variants associated with cardiometabolic adverse effects in patients treated with SSRIs in a naturalistic setting, using a genome-wide cross-sectional approach in a genetically homogeneous sample. We included and genotyped 1981 individuals with schizophrenia or bipolar disorder, of whom 1180 had information available on the outcomes low-density lipoprotein cholesterol (LDL-cholesterol), high-density lipoprotein cholesterol (HDL-cholesterol), triglycerides, and body mass index (BMI) and investigated interactions between SNPs and SSRI use (N = 246) by conducting a genome-wide GxE analysis. We report 13 genome-wide significant interaction effects of SNPs and SSRI serum concentrations on LDL-cholesterol, HDL-cholesterol, and BMI, located in four distinct genomic loci. This study provides new insight into the pharmacogenetics of SSRI but warrants replication in independent populations.


Assuntos
Síndrome Metabólica/induzido quimicamente , Polimorfismo de Nucleotídeo Único/genética , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Adulto , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos Transversais , Feminino , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Masculino , Síndrome Metabólica/genética , Noruega , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Triglicerídeos/sangue
18.
Mov Disord ; 36(2): 449-459, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107653

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci. METHODS: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls. RESULTS: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts. CONCLUSION: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doenças Inflamatórias Intestinais , Atrofia de Múltiplos Sistemas , Animais , Estudo de Associação Genômica Ampla , Humanos , Doenças Inflamatórias Intestinais/genética , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/genética , alfa-Sinucleína/genética
19.
Psychol Med ; 51(13): 2156-2167, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33879273

RESUMO

Bipolar disorder (BD) is a highly heritable mental disorder and is estimated to affect about 50 million people worldwide. Our understanding of the genetic etiology of BD has greatly increased in recent years with advances in technology and methodology as well as the adoption of international consortiums and large population-based biobanks. It is clear that BD is also highly heterogeneous and polygenic and shows substantial genetic overlap with other psychiatric disorders. Genetic studies of BD suggest that the number of associated loci is expected to substantially increase in larger future studies and with it, improved genetic prediction of the disorder. Still, a number of challenges remain to fully characterize the genetic architecture of BD. First among these is the need to incorporate ancestrally-diverse samples to move research away from a Eurocentric bias that has the potential to exacerbate health disparities already seen in BD. Furthermore, incorporation of population biobanks, registry data, and electronic health records will be required to increase the sample size necessary for continued genetic discovery, while increased deep phenotyping is necessary to elucidate subtypes within BD. Lastly, the role of rare variation in BD remains to be determined. Meeting these challenges will enable improved identification of causal variants for the disorder and also allow for equitable future clinical applications of both genetic risk prediction and therapeutic interventions.


Assuntos
Transtorno Bipolar , Estudo de Associação Genômica Ampla/tendências , Herança Multifatorial/genética , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Comorbidade , Humanos , Farmacogenética/tendências , Transtornos Psicóticos/genética
20.
Psychol Med ; : 1-11, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33653435

RESUMO

Abstract. BACKGROUND: Altered expression of the complement component C4A gene is a known risk factor for schizophrenia. Further, predicted brain C4A expression has also been associated with memory function highlighting that altered C4A expression in the brain may be relevant for cognitive and behavioral traits. METHODS: We obtained genetic information and performance measures on seven cognitive tasks for up to 329 773 individuals from the UK Biobank, as well as brain imaging data for a subset of 33 003 participants. Direct genotypes for variants (n = 3213) within the major histocompatibility complex region were used to impute C4 structural variation, from which predicted expression of the C4A and C4B genes in human brain tissue were predicted. We investigated if predicted brain C4A or C4B expression were associated with cognitive performance and brain imaging measures using linear regression analyses. RESULTS: We identified significant negative associations between predicted C4A expression and performance on select cognitive tests, and significant associations with MRI-based cortical thickness and surface area in select regions. Finally, we observed significant inconsistent partial mediation of the effects of predicted C4A expression on cognitive performance, by specific brain structure measures. CONCLUSIONS: These results demonstrate that the C4 risk locus is associated with the central endophenotypes of cognitive performance and brain morphology, even when considered independently of other genetic risk factors and in individuals without mental or neurological disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA