Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Psychol Med ; : 1-9, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757184

RESUMO

BACKGROUND: Amygdala and dorsal anterior cingulate cortex responses to facial emotions have shown promise in predicting treatment response in medication-free major depressive disorder (MDD). Here, we examined their role in the pathophysiology of clinical outcomes in more chronic, difficult-to-treat forms of MDD. METHODS: Forty-five people with current MDD who had not responded to ⩾2 serotonergic antidepressants (n = 42, meeting pre-defined fMRI minimum quality thresholds) were enrolled and followed up over four months of standard primary care. Prior to medication review, subliminal facial emotion fMRI was used to extract blood-oxygen level-dependent effects for sad v. happy faces from two pre-registered a priori defined regions: bilateral amygdala and dorsal/pregenual anterior cingulate cortex. Clinical outcome was the percentage change on the self-reported Quick Inventory of Depressive Symptomatology (16-item). RESULTS: We corroborated our pre-registered hypothesis (NCT04342299) that lower bilateral amygdala activation for sad v. happy faces predicted favorable clinical outcomes (rs[38] = 0.40, p = 0.01). In contrast, there was no effect for dorsal/pregenual anterior cingulate cortex activation (rs[38] = 0.18, p = 0.29), nor when using voxel-based whole-brain analyses (voxel-based Family-Wise Error-corrected p < 0.05). Predictive effects were mainly driven by the right amygdala whose response to happy faces was reduced in patients with higher anxiety levels. CONCLUSIONS: We confirmed the prediction that a lower amygdala response to negative v. positive facial expressions might be an adaptive neural signature, which predicts subsequent symptom improvement also in difficult-to-treat MDD. Anxiety reduced adaptive amygdala responses.

2.
Eur Eat Disord Rev ; 32(3): 575-588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303559

RESUMO

OBJECTIVE: We present the protocol of a feasibility randomised controlled trial (RCT) of intermittent theta burst stimulation (iTBS) for young people with anorexia nervosa (AN). Effective first-line psychological therapies exist for young people with AN, but little is known about how to treat those who do not respond. Non-invasive neuromodulation, such as iTBS, could address unmet treatment needs by targeting neurocircuitry associated with the development and/or maintenance of AN. DESIGN: Sixty-six young people (aged 13-30 years) with persistent AN will be randomly allocated to receive 20 sessions of real or sham iTBS over the left dorsolateral prefrontal cortex in addition to their usual treatment. Outcomes will be measured at baseline, post-treatment (1-month post-randomisation) and 4-months post-randomisation (when unblinding will occur). Additional open follow-ups will be conducted at 12- and 24-months post-randomisation. The primary feasibility outcome is the proportion of participants retained in the study at 4-months. Secondary outcomes include AN symptomatology, other psychopathology, quality of life, service utilisation, neurocognitive processes, and neuroimaging measures. DISCUSSION: Findings will inform the development of a future large-scale RCT. They will also provide exploratory data on treatment efficacy, and neural and neurocognitive predictors and correlates of treatment response to iTBS in AN.


Assuntos
Anorexia Nervosa , Estimulação Magnética Transcraniana , Humanos , Adolescente , Estimulação Magnética Transcraniana/métodos , Seguimentos , Anorexia Nervosa/terapia , Anorexia Nervosa/psicologia , Estudos de Viabilidade , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Biol Psychiatry Glob Open Sci ; 4(3): 100308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645404

RESUMO

Background: A seminal study found higher subgenual frontal cortex resting-state connectivity with 2 left ventral frontal regions and the dorsal midbrain to predict better response to psychotherapy versus medication in individuals with treatment-naïve major depressive disorder (MDD). Here, we examined whether these subgenual networks also play a role in the pathophysiology of clinical outcomes in MDD with early treatment resistance in primary care. Methods: Forty-five people with current MDD who had not responded to ≥2 serotonergic antidepressants (n = 43, meeting predefined functional magnetic resonance imaging minimum quality thresholds) were enrolled and followed over 4 months of standard care. Functional magnetic resonance imaging resting-state connectivity between the preregistered subgenual frontal cortex seed and 3 previously identified left ventromedial, ventrolateral prefrontal/insula, and dorsal midbrain regions was extracted. The clinical outcome was the percentage change on the self-reported 16-item Quick Inventory of Depressive Symptomatology. Results: We observed a reversal of our preregistered hypothesis in that higher resting-state connectivity between the subgenual cortex and the a priori ventrolateral prefrontal/insula region predicted favorable rather than unfavorable clinical outcomes (rs39 = -0.43, p = .006). This generalized to the sample including participants with suboptimal functional magnetic resonance imaging quality (rs43 = -0.35, p = .02). In contrast, no effects (rs39 = 0.12, rs39 = -0.01) were found for connectivity with the other 2 preregistered regions or in a whole-brain analysis (voxel-based familywise error-corrected p < .05). Conclusions: Subgenual connectivity with the ventrolateral prefrontal cortex/insula is relevant for subsequent clinical outcomes in current MDD with early treatment resistance. Its positive association with favorable outcomes could be explained primarily by psychosocial rather than the expected pharmacological changes during the follow-up period.


Evidence has shown that connectivity of the subgenual cortex, a frontal midline brain region, with 3 other brain regions can predict whether people with never-treated depression benefit more from psychological or medication-based treatments. Here, using resting-state fMRI, we show that subgenual connections with one of these regions, the left ventrolateral prefrontal/insula, also predict future average depression levels in people with difficult-to-treat depression. These data suggest that functional connectivity between these regions may be linked to clinical outcomes in major depressive disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA