Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Mass Spectrom (Chichester) ; 25(1): 30-43, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30773925

RESUMO

Gas-phase ion trap mass spectrometry experiments and density functional theory calculations have been used to examine the routes to the formation of the 1,8-naphthyridine (napy) ligated geminally dimetallated phenyl complexes [(napy)Cu2(Ph)]+, [(napy)Ag2(Ph)]+ and [(napy)CuAg(Ph)]+ via extrusion of CO2 or SO2 under collision-induced dissociation conditions from their corresponding precursor complexes [(napy)Cu2(O2CPh)]+, [(napy)Ag2(O2CPh)]+, [(napy)CuAg(O2CPh)]+ and [(napy)Cu2(O2SPh)]+, [(napy)Ag2(O2SPh)]+, [(napy)CuAg(O2SPh)]+. Desulfination was found to be more facile than decarboxylation. Density functional theory calculations reveal that extrusion proceeds via two transition states: TS1 enables isomerization of the O, O-bridged benzoate to its O-bound form; TS2 involves extrusion of CO2 or SO2 with the concomitant formation of the organometallic cation and has the highest barrier. Of all the organometallic cations, only [(napy)Cu2(Ph)]+ reacts with water via hydrolysis to give [(napy)Cu2(OH)]+, consistent with density functional theory calculations which show that hydrolysis proceeds via the initial formation of the adduct [(napy)Cu2(Ph)(H2O)]+ which then proceeds via TS3 in which the coordinated H2O is deprotonated by the coordinated phenyl anion to give the product complex [(napy)Cu2(OH)(C6H6)]+, which then loses benzene.

2.
Eur J Mass Spectrom (Chichester) ; 24(1): 43-48, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29233003

RESUMO

Two gas-phase catalytic cycles involving C-F bond activation of trifluoroethanol and trifluoroacetic acid were detected by multistage mass spectrometry experiments. A binuclear dimolybdate centre [Mo2O6(F)]- acts as the catalyst in each cycle. The first cycle, entered via the reaction of [Mo2O6(OH)]- with trifluoroethanol and elimination of water to form [Mo2O6(OCH2CF3)]-, proceeds via four steps: (1) oxidation of the alkoxo ligand and its elimination as aldehyde; (2) reaction of [Mo2O5(OH)]- with trifluoroethanol and elimination of water to form [Mo2O5(OCH2CF3)]; (3) decomposition of the alkoxo ligand via loss of 1,1 difluoroethene; and (4) reaction of [Mo2O6(F)]- with a second equivalent of trifluoroethanol to regenerate Mo2O6(OCH2CF3)]-. Steps (2) and (3) do not occur at room temperature and require collisional activation to proceed. The second cycle is entered via the reaction of [Mo2O6(OH)]- with trifluoroacetic acid and elimination of water to form [Mo2O6(O2CCF3)]- and involves two steps only: (1) fluoride transfer to a molybdenum centre to form [Mo2O6(F)]-; (2) reaction of [Mo2O6(F)]- with trifluoroacetic acid and loss of water to regenerate [Mo2O6(O2CCF3)]-. Comparisons are made with the chemistry of [Mo2O6(OH)]- reacting with acetic acid.

3.
Eur J Mass Spectrom (Chichester) ; 23(6): 351-358, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29183196

RESUMO

A combination of gas-phase ion trap mass spectrometry experiments and density functional theory (DFT) calculations have been used to examine the role of substituents on the decarboxylation of 25 different coordinated aromatic carboxylates in binuclear complexes, [(napy)Cu2(O2CC6H4X)]+, where napy is the ligand 1,8-naphthyridine (molecular formula, C8H6N2) and X = H and the ortho ( o), meta ( m) and para ( p) isomers of F, Br, CN, NO2, CF3, OAc, Me and MeO. Two competing unimolecular reaction pathways were found: decarboxylation to give the organometallic cation [(napy)Cu2(C6H4X)]+ or loss of the neutral copper benzoate to yield [(napy)Cu]+. The substituents on the aryl group influence the branching ratios of these product channels, but decarboxylation is always the dominant pathway. Density functional theory calculations reveal that decarboxylation proceeds via two transition states. The first enables a change in the coordination mode of the coordinated benzoate in [(napy)Cu2(O2CC6H4X)]+ from the thermodynamically favoured O, O-bridged form to the O-bound form, which is the reactive conformation for the second transition state which involves extrusion of CO2 with concomitant formation of the CO2 coordinated organometallic cation, [(napy)Cu2(C6H4X)(CO2)]+, which then loses CO2 in the final step to yield [(napy)Cu2(C6H4X)]+. In all cases the barrier is highest for the second transition state. The o-substituted benzoates show a lower activation energy than the m-substituted ones, while the p-substituted ones have the highest energy, which is consistent with the experimentally determined normalised collision energy required to induce fragmentation of [(napy)Cu2(O2CC6H4X)]+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA