RESUMO
Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.
Assuntos
Epitélio/fisiologia , Helmintíase/imunologia , Helmintos/fisiologia , Fatores de Transcrição de Octâmero/metabolismo , Células Receptoras Sensoriais/fisiologia , Células Th2/imunologia , Animais , Humanos , Sistema Imunitário , Interleucina-17/metabolismo , Sistema Nervoso , Neuroimunomodulação , Fatores de Transcrição de Octâmero/genética , Transdução de Sinais , Canais de Cátion TRPM/metabolismoRESUMO
The small intestinal tuft cell-ILC2 circuit mediates epithelial responses to intestinal helminths and protists by tuft cell chemosensory-like sensing and IL-25-mediated activation of lamina propria ILC2s. Small intestine ILC2s constitutively express the IL-25 receptor, which is negatively regulated by A20 (Tnfaip3). A20 deficiency in ILC2s spontaneously triggers the circuit and, unexpectedly, promotes adaptive small-intestinal lengthening and remodeling. Circuit activation occurs upon weaning and is enabled by dietary polysaccharides that render mice permissive for Tritrichomonas colonization, resulting in luminal accumulation of acetate and succinate, metabolites of the protist hydrogenosome. Tuft cells express GPR91, the succinate receptor, and dietary succinate, but not acetate, activates ILC2s via a tuft-, TRPM5-, and IL-25-dependent pathway. Also induced by parasitic helminths, circuit activation and small intestinal remodeling impairs infestation by new helminths, consistent with the phenomenon of concomitant immunity. We describe a metabolic sensing circuit that may have evolved to facilitate mutualistic responses to luminal pathosymbionts.
Assuntos
Intestino Delgado/fisiologia , Tritrichomonas/metabolismo , Acetatos/metabolismo , Animais , Fibras na Dieta/metabolismo , Metabolismo Energético , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/citologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microbiota , Plasmídeos/genética , Plasmídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Ácido Succínico/metabolismo , Canais de Cátion TRPM/metabolismo , Tritrichomonas/crescimento & desenvolvimento , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismoRESUMO
Despite gathering evidence that ubiquitylation can direct non-degradative outcomes, most investigations of ubiquitylation in T cells have focused on degradation. Here, we integrated proteomic and transcriptomic datasets from primary mouse CD4+ T cells to establish a framework for predicting degradative or non-degradative outcomes of ubiquitylation. Di-glycine remnant profiling was used to reveal ubiquitylated proteins, which in combination with whole-cell proteomic and transcriptomic data allowed prediction of protein degradation. Analysis of ubiquitylated proteins identified by di-glycine remnant profiling indicated that activation of CD4+ T cells led to an increase in non-degradative ubiquitylation. This correlated with an increase in non-proteasome-targeted K29, K33 and K63 polyubiquitin chains. This study revealed over 1,200 proteins that were ubiquitylated in primary mouse CD4+ T cells and highlighted the relevance of non-proteasomally targeted ubiquitin chains in T cell signaling.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária/imunologia , Proteoma , Proteômica , Animais , Perfilação da Expressão Gênica , Ativação Linfocitária/genética , Espectrometria de Massas , Camundongos , Poliubiquitina/metabolismo , Proteômica/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , UbiquitinaçãoRESUMO
Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.
Assuntos
Infestações por Ácaros , Ácaros , Animais , Citocinas , Folículo Piloso/patologia , Humanos , Imunidade Inata , Inflamação , Interleucina-13 , Linfócitos/patologia , Camundongos , Infestações por Ácaros/complicações , Infestações por Ácaros/parasitologia , Infestações por Ácaros/patologia , SimbioseRESUMO
BACKGROUND: Mucopolysaccharidosis IIIC (MPSIIIC) is one of four Sanfilippo diseases sharing clinical symptoms of severe cognitive decline and shortened lifespan. The missing enzyme, heparan sulfate acetyl-CoA: α-glucosaminide-N-acetyltransferase (HGSNAT), is bound to the lysosomal membrane, therefore cannot cross the blood-brain barrier or diffuse between cells. We previously demonstrated disease correction in MPSIIIC mice using an Adeno-Associated Vector (AAV) delivering HGSNAT via intraparenchymal brain injections using an AAV2 derived AAV-truetype (AAV-TT) serotype with improved distribution over AAV9. METHODS: Here, intraparenchymal AAV was delivered in sheep using catheters or Hamilton syringes, placed using Brainlab cranial navigation for convection enhanced delivery, to reduce proximal vector expression and improve spread. RESULTS: Hamilton syringes gave improved AAV-GFP distribution, despite lower vector doses and titres. AAV-TT-GFP displayed moderately better transduction compared to AAV9-GFP but both serotypes almost exclusively transduced neurons. Functional HGSNAT enzyme was detected in 24-37% of a 140g gyrencephalic sheep brain using AAV9-HGSNAT with three injections in one hemisphere. CONCLUSIONS: Despite variabilities in volume and titre, catheter design may be critical for efficient brain delivery. These data help inform a clinical trial for MPSIIIC.
Assuntos
Mucopolissacaridose III , Animais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Encéfalo , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Heparitina Sulfato/metabolismo , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Ovinos , Terapia GenéticaRESUMO
The aim of this study was to evaluate the efficacy of high dose genistein aglycone in Sanfilippo syndrome (mucopolysaccharidosis type III). High doses of genistein aglycone have been shown to correct neuropathology and hyperactive behaviour in mice, but efficacy in humans is uncertain. This was a single centre, double-blinded, randomised, placebo-controlled study with open-label extension phase. Randomised participants received either 160 mg/kg/day genistein aglycone or placebo for 12 months; subsequently all participants received genistein for 12 months. The primary outcome measure was the change in heparan sulfate concentration in cerebrospinal fluid (CSF), with secondary outcome measures including heparan sulfate in plasma and urine, total glycosaminoglycans in urine, cognitive and adaptive behaviour scores, quality of life measures and actigraphy. Twenty-one participants were randomised and 20 completed the placebo-controlled phase. After 12 months of treatment, the CSF heparan sulfate concentration was 5.5% lower in the genistein group (adjusted for baseline values), but this was not statistically significant (P = .26), and CSF heparan sulfate increased in both groups during the open-label extension phase. Reduction of urinary glycosaminoglycans was significantly greater in the genistein group (32.1% lower than placebo after 12 months, P = .0495). Other biochemical and clinical parameters showed no significant differences between groups. High dose genistein aglycone (160 mg/kg/day) was not associated with clinically meaningful reductions in CSF heparan sulfate and no evidence of clinical efficacy was detected. However, there was a statistically significant reduction in urine glycosaminoglycans. These data do not support the use of genistein aglycone therapy in mucopolysaccharidosis type III. High dose genistein aglycone does not lead to clinically meaningful reductions in biomarkers or improvement in neuropsychological outcomes in mucopolysaccharidosis type III.
Assuntos
Genisteína/administração & dosagem , Mucopolissacaridose III/tratamento farmacológico , Adolescente , Animais , Biomarcadores/análise , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Genisteína/farmacologia , Glicosaminoglicanos/urina , Heparitina Sulfato/líquido cefalorraquidiano , Humanos , Masculino , Camundongos , Qualidade de Vida , Resultado do TratamentoRESUMO
BACKGROUND: Chimeric mouse models generated via adoptive bone marrow transfer are the foundation for immune cell tracking in neuroinflammation. Chimeras that exhibit low chimerism levels, blood-brain barrier disruption and pro-inflammatory effects prior to the progression of the pathological phenotype, make it difficult to distinguish the role of immune cells in neuroinflammatory conditions. Head-shielded irradiation overcomes many of the issues described and replaces the recipient bone marrow system with donor haematopoietic cells expressing a reporter gene or different pan-leukocyte antigen, whilst leaving the blood-brain barrier intact. However, our previous work with full body irradiation suggests that this may generate a pro-inflammatory peripheral environment which could impact on the brain's immune microenvironment. Our aim was to compare non-myeloablative busulfan conditioning against head-shielded irradiation bone marrow chimeras prior to implantation of glioblastoma, a malignant brain tumour with a pro-inflammatory phenotype. METHODS: Recipient wild-type/CD45.1 mice received non-myeloablative busulfan conditioning (25 mg/kg), full intensity head-shielded irradiation, full intensity busulfan conditioning (125 mg/kg) prior to transplant with whole bone marrow from CD45.2 donors and were compared against untransplanted controls. Half the mice from each group were orthotopically implanted with syngeneic GL-261 glioblastoma cells. We assessed peripheral blood, bone marrow and spleen chimerism, multi-organ pro-inflammatory cytokine profiles at 12 weeks and brain chimerism and immune cell infiltration by whole brain flow cytometry before and after implantation of glioblastoma at 12 and 14 weeks respectively. RESULTS: Both non-myeloablative conditioning and head-shielded irradiation achieve equivalent blood and spleen chimerism of approximately 80%, although bone marrow engraftment is higher in the head-shielded irradiation group and highest in the fully conditioned group. Head-shielded irradiation stimulated pro-inflammatory cytokines in the blood and spleen but not in the brain, suggesting a systemic response to irradiation, whilst non-myeloablative conditioning showed no cytokine elevation. Non-myeloablative conditioning achieved higher donor chimerism in the brain after glioblastoma implantation than head-shielded irradiation with an altered immune cell profile. CONCLUSION: Our data suggest that non-myeloablative conditioning generates a more homeostatic peripheral inflammatory environment than head-shielded irradiation to allow a more consistent evaluation of immune cells in glioblastoma and can be used to investigate the roles of peripheral immune cells and bone marrow-derived subsets in other neurological diseases.
Assuntos
Antineoplásicos Alquilantes/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos da radiação , Neoplasias Encefálicas/imunologia , Bussulfano/farmacologia , Quimera , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/efeitos da radiação , Inflamação/patologia , Quimera por Radiação , Animais , Células da Medula Óssea/imunologia , Linhagem Celular Tumoral , Citocinas/sangue , Feminino , Glioblastoma/patologia , Inflamação/induzido quimicamente , Antígenos Comuns de Leucócito/genética , Camundongos , Camundongos Endogâmicos C57BL , Transplante de NeoplasiasRESUMO
Mucopolysaccharidosis IIIB is a paediatric lysosomal storage disease caused by deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU), involved in the degradation of the glycosaminoglycan heparan sulphate. Absence of NAGLU leads to accumulation of partially degraded heparan sulphate within lysosomes and the extracellular matrix, giving rise to severe CNS degeneration with progressive cognitive impairment and behavioural problems. There are no therapies. Haematopoietic stem cell transplant shows great efficacy in the related disease mucopolysaccharidosis I, where donor-derived monocytes can transmigrate into the brain following bone marrow engraftment, secrete the missing enzyme and cross-correct neighbouring cells. However, little neurological correction is achieved in patients with mucopolysaccharidosis IIIB. We have therefore developed an ex vivo haematopoietic stem cell gene therapy approach in a mouse model of mucopolysaccharidosis IIIB, using a high-titre lentiviral vector and the myeloid-specific CD11b promoter, driving the expression of NAGLU (LV.NAGLU). To understand the mechanism of correction we also compared this with a poorly secreted version of NAGLU containing a C-terminal fusion to IGFII (LV.NAGLU-IGFII). Mucopolysaccharidosis IIIB haematopoietic stem cells were transduced with vector, transplanted into myeloablated mucopolysaccharidosis IIIB mice and compared at 8 months of age with mice receiving a wild-type transplant. As the disease is characterized by increased inflammation, we also tested the anti-inflammatory steroidal agent prednisolone alone, or in combination with LV.NAGLU, to understand the importance of inflammation on behaviour. NAGLU enzyme was substantially increased in the brain of LV.NAGLU and LV.NAGLU-IGFII-treated mice, with little expression in wild-type bone marrow transplanted mice. LV.NAGLU treatment led to behavioural correction, normalization of heparan sulphate and sulphation patterning, reduced inflammatory cytokine expression and correction of astrocytosis, microgliosis and lysosomal compartment size throughout the brain. The addition of prednisolone improved inflammatory aspects further. Substantial correction of lysosomal storage in neurons and astrocytes was also achieved in LV.NAGLU-IGFII-treated mice, despite limited enzyme secretion from engrafted macrophages in the brain. Interestingly both wild-type bone marrow transplant and prednisolone treatment alone corrected behaviour, despite having little effect on brain neuropathology. This was attributed to a decrease in peripheral inflammatory cytokines. Here we show significant neurological disease correction is achieved using haematopoietic stem cell gene therapy, suggesting this therapy alone or in combination with anti-inflammatories may improve neurological function in patients.
Assuntos
Encefalite/etiologia , Encefalite/terapia , Terapia Genética/métodos , Macrófagos/enzimologia , Mucopolissacaridose III , Células-Tronco/fisiologia , Animais , Encéfalo/enzimologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gliose/terapia , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose III/complicações , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Mucopolissacaridose III/terapia , Prednisolona/uso terapêutico , Baço/enzimologia , Sulfatases/genética , Sulfatases/metabolismoRESUMO
Recombinant adeno-associated viruses (AAVs) are popular in vivo gene transfer vehicles. However, vector doses needed to achieve therapeutic effect are high and some target tissues in the central nervous system remain difficult to transduce. Gene therapy trials using AAV for the treatment of neurological disorders have seldom led to demonstrated clinical efficacy. Important contributing factors are low transduction rates and inefficient distribution of the vector. To overcome these hurdles, a variety of capsid engineering methods have been utilized to generate capsids with improved transduction properties. Here we describe an alternative approach to capsid engineering, which draws on the natural evolution of the virus and aims to yield capsids that are better suited to infect human tissues. We generated an AAV capsid to include amino acids that are conserved among natural AAV2 isolates and tested its biodistribution properties in mice and rats. Intriguingly, this novel variant, AAV-TT, demonstrates strong neurotropism in rodents and displays significantly improved distribution throughout the central nervous system as compared to AAV2. Additionally, sub-retinal injections in mice revealed markedly enhanced transduction of photoreceptor cells when compared to AAV2. Importantly, AAV-TT exceeds the distribution abilities of benchmark neurotropic serotypes AAV9 and AAVrh10 in the central nervous system of mice, and is the only virus, when administered at low dose, that is able to correct the neurological phenotype in a mouse model of mucopolysaccharidosis IIIC, a transmembrane enzyme lysosomal storage disease, which requires delivery to every cell for biochemical correction. These data represent unprecedented correction of a lysosomal transmembrane enzyme deficiency in mice and suggest that AAV-TT-based gene therapies may be suitable for treatment of human neurological diseases such as mucopolysaccharidosis IIIC, which is characterized by global neuropathology.
Assuntos
Capsídeo/fisiologia , Terapia Genética/métodos , Engenharia de Proteínas/métodos , Animais , Dependovirus/genética , Feminino , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Células Fotorreceptoras/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retina/fisiologia , Distribuição Tecidual , Transdução GenéticaRESUMO
Nedd4-family E3 ubiquitin ligases regulate an array of biologic processes. Autoinhibition maintains these catalytic ligases in an inactive state through several mechanisms. However, although some Nedd4 family members are activated by binding to Nedd4 family-interacting proteins (Ndfips), how binding activates E3 function remains unclear. Our data reveal how these two regulatory processes are linked functionally. In the absence of Ndfip1, the Nedd4 family member Itch can bind an E2 but cannot accept ubiquitin onto its catalytic cysteine. This is because Itch is autoinhibited by an intramolecular interaction between its HECT (homologous to the E6-AP carboxy terminus domain) and two central WW domains. Ndfip1 binds these WW domains to release the HECT, allowing trans-thiolation and Itch catalytic activity. This molecular switch also regulates the closely related family member WWP2. Importantly, multiple PY motifs are required for Ndfip1 to activate Itch, functionally distinguishing Ndfips from single PY-containing substrates. These data establish a novel mechanism for control of the function of a subfamily of Nedd4 E3 ligases at the level of E2-E3 trans-thiolation.
Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
D1-dopamine receptors (Drd1a) are highly expressed in the deep layers of the cerebral cortex and the striatum. A number of human diseases such as Huntington disease and schizophrenia are known to have cortical pathology involving dopamine receptor expressing neurons. To illuminate their functional role, we exploited a Cre/Lox molecular paradigm to generate Emx-1(tox) MUT mice, a transgenic line in which cortical Drd1a-expressing pyramidal neurons were selectively ablated. Emx-1(tox) MUT mice displayed prominent forelimb dystonia, hyperkinesia, ataxia on rotarod testing, heightened anxiety-like behavior, and age-dependent abnormalities in a test of social interaction. The latter occurred in the context of normal working memory on testing in the Y-maze and for novel object recognition. Some motor and behavioral abnormalities in Emx-1(tox) MUT mice overlapped with those in CamKIIα(tox) MUT transgenic mice, a line in which both striatal and cortical Drd1a-expressing cells were ablated. Although Emx-1(tox) MUT mice had normal striatal anatomy, both Emx-1(tox) MUT and CamKIIα(tox) MUT mice displayed selective neuronal loss in cortical layers V and VI. This study shows that loss of cortical Drd1a-expressing cells is sufficient to produce deficits in multiple motor and behavioral domains, independent of striatal mechanisms. Primary cortical changes in the D1 dopamine receptor compartment are therefore likely to model a number of core clinical features in disorders such as Huntington disease and schizophrenia.
Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Doença de Huntington/fisiopatologia , Células Piramidais/fisiologia , Receptores de Dopamina D1/fisiologia , Esquizofrenia/fisiopatologia , Animais , Ansiedade/genética , Ansiedade/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Feminino , Marcha/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Doença de Huntington/genética , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Mutação , Fenótipo , Receptores de Dopamina D1/genética , Esquizofrenia/genética , Comportamento Social , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologiaRESUMO
Progressive cell loss is observed in the striatum, cerebral cortex, thalamus, hypothalamus, subthalamic nucleus and hippocampus in Huntington disease. In the striatum, dopamine-responsive medium spiny neurons are preferentially lost. Clinical features include involuntary movements, gait and orofacial impairments in addition to cognitive deficits and psychosis, anxiety and mood disorders. We utilized the Cre-LoxP system to generate mutant mice with selective postnatal ablation of D1 dopamine receptor-expressing striatal neurons to determine which elements of the complex Huntington disease phenotype relate to loss of this neuronal subpopulation. Mutant mice had reduced body weight, locomotor slowing, reduced rearing, ataxia, a short stride length wide-based erratic gait, impairment in orofacial movements and displayed haloperidol-suppressible tic-like movements. The mutation was associated with an anxiolytic profile. Mutant mice had significant striatal-specific atrophy and astrogliosis. D1-expressing cell number was reduced throughout the rostrocaudal extent of the dorsal striatum consistent with partial destruction of the striatonigral pathway. Additional striatal changes included up-regulated D2 and enkephalin mRNA, and an increased density of D2 and preproenkephalin-expressing projection neurons, and striatal neuropeptide Y and cholinergic interneurons. These data suggest that striatal D1-cell-ablation alone may account for the involuntary movements and locomotor, balance and orofacial deficits seen not only in HD but also in HD phenocopy syndromes with striatal atrophy. Therapeutic strategies would therefore need to target striatal D1 cells to ameliorate deficits especially when the clinical presentation is dominated by a bradykinetic/ataxic phenotype with involuntary movements.
Assuntos
Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Receptores de Dopamina D1/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Contagem de Células , Corpo Estriado/patologia , Discinesias/fisiopatologia , Feminino , Marcha/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Equilíbrio Postural/fisiologia , Receptores de Dopamina D1/genéticaRESUMO
OBJECTIVE: Older inpatients who fall are often frail, with multiple co-morbidities and polypharmacy. Although the causes of falls are multifactorial, sedating and delirium-inducing drugs increase that risk. The aims were to determine whether people who fell had a change in their sedative and anticholinergic medication burden during an admission compared to people who did not fall. A secondary aim was to determine the factors associated with change in drug burden. METHODS: A retrospective, observational, case-control study of inpatients who fell. Two hundred consecutive people who fell were compared with 200 randomly selected people who had not fallen. Demographics, functional ability, frailty and cognition were recorded. For each patient, their total medications and anticholinergic and sedative burden were calculated on admission and on discharge, using the drug burden index (DBI). RESULTS: People who fell were more dependent and cognitively impaired than people who did not fallen. People who fell had a higher DBI on admission, than people who had not fall (mean: .69 vs .43, respectively, p < .001) and discharge (.66 vs .38, p < .001). For both cohorts, the DBI decreased between admission and discharge (-.03 and -.05), but neither were clinically significant. Higher total medications and a higher number DBI medications on admission were both associated with greater DBI changes (p = .003 and <.001, respectively). However, the presence (or absence) of cognitive impairment, dependency, frailty and single vs multiple falls were not significantly associated with DBI changes. CONCLUSIONS: In older people, DBI medications and falls are both common and have serious consequences, yet this study was unable to demonstrate any clinically relevant reduction in average DBI either in people who fell or people who had not fallen during a hospital admission.
RESUMO
Mucopolysaccharidosis type II (MPSII) is a rare pediatric X-linked lysosomal storage disease, caused by heterogeneous mutations in the iduronate-2-sulfatase (IDS) gene, which result in accumulation of heparan sulfate (HS) and dermatan sulfate within cells. This leads to severe skeletal abnormalities, hepatosplenomegaly, and cognitive deterioration. The progressive nature of the disease is a huge obstacle to achieve full neurological correction. Although current therapies can only treat somatic symptoms, a lentivirus-based hematopoietic stem cell gene therapy (HSCGT) approach has recently achieved improved central nervous system (CNS) neuropathology in the MPSII mouse model following transplant at 2 months of age. In this study, we evaluate neuropathology progression in 2-, 4- and 9-month-old MPSII mice, and using the same HSCGT strategy, we investigated somatic and neurological disease attenuation following treatment at 4 months of age. Our results showed gradual accumulation of HS between 2 and 4 months of age, but full manifestation of microgliosis/astrogliosis as early as 2 months. Late HSCGT fully reversed the somatic symptoms, thus achieving the same degree of peripheral correction as early therapy. However, late treatment resulted in slightly decreased efficacy in the CNS, with poorer brain enzymatic activity, together with reduced normalization of HS oversulfation. Overall, our findings confirm significant lysosomal burden and neuropathology in 2-month-old MPSII mice. Peripheral disease is readily reversible by LV.IDS-HSCGT regardless of age of transplant, suggesting a viable treatment for somatic disease. However, in the brain, higher IDS enzyme levels are achievable with early HSCGT treatment, and later transplant seems to be less effective, supporting the view that the earlier patients are diagnosed and treated, the better the therapy outcome.
Assuntos
Iduronato Sulfatase , Sintomas Inexplicáveis , Mucopolissacaridose II , Doenças do Sistema Nervoso , Humanos , Criança , Camundongos , Animais , Lactente , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Iduronato Sulfatase/genética , Iduronato Sulfatase/uso terapêutico , Iduronato Sulfatase/metabolismo , Heparitina Sulfato , Terapia Genética/métodos , Células-Tronco/metabolismoRESUMO
Akt1 and Akt2, isoforms of the serine threonine kinase Akt, are essential for T cell development. However, their role in peripheral T cell differentiation remains undefined. Using mice with germline deletions of either Akt1 or Akt2, we found that both isoforms are important for Th17 differentiation, although Akt2 loss had a greater impact than loss of Akt1. In contrast to defective IL-17 production, Akt2 -/- T cells exhibited enhanced IL-4 production in vitro under Th2 polarizing conditions. In vivo , Akt2 -/- mice displayed significantly diminished IL-17A and GM-CSF production following immunization with myelin oligodendrocyte glycoprotein (MOG). This dampened response was associated with further alterations in Th cell differentiation including decreased IFNγ production but preserved IL-4 production, and preferential expansion of regulatory T cells compared to non-regulatory CD4 T cells. Taken together, we identify Akt2 as an important signaling molecule in regulating peripheral CD4 T cell responses.
RESUMO
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a mutation in the IDS gene, resulting in deficiency of the enzyme iduronate-2-sulfatase (IDS) causing heparan sulfate (HS) and dermatan sulfate (DS) accumulation in all cells. This leads to skeletal and cardiorespiratory disease with severe neurodegeneration in two thirds of sufferers. Enzyme replacement therapy is ineffective at treating neurological disease, as intravenously delivered IDS is unable to cross the blood-brain barrier (BBB). Hematopoietic stem cell transplant is also unsuccessful, presumably due to insufficient IDS enzyme production from transplanted cells engrafting in the brain. We used two different peptide sequences (rabies virus glycoprotein [RVG] and gh625), both previously published as BBB-crossing peptides, fused to IDS and delivered via hematopoietic stem cell gene therapy (HSCGT). HSCGT with LV.IDS.RVG and LV.IDS.gh625 was compared with LV.IDS.ApoEII and LV.IDS in MPS II mice at 6 months post-transplant. Levels of IDS enzyme activity in the brain and peripheral tissues were lower in LV.IDS.RVG- and LV.IDS.gh625-treated mice than in LV.IDS.ApoEII- and LV.IDS-treated mice, despite comparable vector copy numbers. Microgliosis, astrocytosis, and lysosomal swelling were partially normalized in MPS II mice treated with LV.IDS.RVG and LV.IDS.gh625. Skeletal thickening was normalized by both treatments to wild-type levels. Although reductions in skeletal abnormalities and neuropathology are encouraging, given the low levels of enzyme activity compared with control tissue from LV.IDS- and LV.IDS.ApoEII-transplanted mice, the RVG and gh625 peptides are unlikely to be ideal candidates for HSCGT in MPS II and are inferior to the ApoEII peptide that we have previously demonstrated to be more effective at correcting MPS II disease than IDS alone.
Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Doenças do Sistema Nervoso , Vírus da Raiva , Camundongos , Animais , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Ácido Idurônico , Iduronato Sulfatase/genética , Glicoproteínas/genética , PeptídeosRESUMO
Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C). The challenge with an acute high poly(I:C) dose exacerbated systemic and brain cytokine expression, especially IL-1ß in the hippocampus. This was accompanied by an increase in caspase-1 activity within the brain of MPS IIIA mice with concomitant loss of hippocampal GFAP and NeuN expression. Similar levels of cell damage, together with exacerbation of gliosis, were also observed in MPS IIIA mice following low chronic poly(I:C) dosing. While further investigation is warranted to fully understand the extent of IL-1ß involvement in MPS IIIA exacerbated neurodegeneration, our data robustly reinforces our previous findings, indicating IL-1ß as a pivotal catalyst for neuropathological processes in MPS IIIA.
Assuntos
Modelos Animais de Doenças , Mucopolissacaridose III , Poli I-C , Animais , Mucopolissacaridose III/patologia , Mucopolissacaridose III/imunologia , Mucopolissacaridose III/metabolismo , Camundongos , Interleucina-1beta/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/imunologia , Encéfalo/patologia , Encéfalo/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Hipocampo/patologia , Hipocampo/metabolismoRESUMO
BACKGROUND: Mice generated by a Cre/LoxP transgenic paradigm were used to model neurodegenerative basal ganglia disease of which Huntington disease (HD) is the prototypical example. In HD, death occurs in striatal projection neurons as well as cortical neurons. Cortical and striatal neurons that express the D1 dopamine receptor (Drd1a) degenerate in HD. The contribution that death of specific neuronal cell populations makes to the HD disease phenotype and the response of the brain to loss of defined cell subtypes is largely unknown. METHODS: Drd1a-expressing cells were targeted for cell death and three independent lines generated; a striatal-restricted line, a cortical-restricted line and a global line in which Drd1a cells were deleted from both the striatum and cortex. Two independent experimental approaches were used. In the first, the proliferative marker Ki-67 was used to identify proliferating cells in eighty-week-old mice belonging to a generic global line, a global in which Drd1a cells express green fluorescent protein (GFP-global) and in eighty-week-old mice of a cortical line. In the second experiment, the proliferative response of four-week-old mice belonging to GFP-global and striatal lines was assessed using the thymidine analogue BrdU. The phenotype of proliferating cells was ascertained by double staining for BrdU and Olig2 (an oligodendrocyte marker), Iba1 (a microglial cell marker), S100ß (an astroglial cell marker), or NeuN (a neuronal cell marker). RESULTS: In the first study, we found that Ki-67-expressing cells were restricted to the striatal side of the lateral ventricles. Control mice had a greater number of Ki-67+ cells than mutant mice. There was no overlap between Ki-67 and GFP staining in control or mutant mice, suggesting that cells did not undergo cell division once they acquired a Drd1a phenotype. In contrast, in the second study we found that BrdU+ cells were identified throughout the cortex, striatum and periventricular region of control and mutant mice. Mutant mice from the GFP-global line showed increased BrdU+ cells in the cortex, striatum and periventricular region relative to control. Striatal line mutant mice had an increased number of BrdU+ cells in the striatum and periventricular region, but not the cortex. The number of microglia, astrocytes, oligodendrocytes and neurons generated from dividing progenitors was increased relative to control mice in most brain regions in mutant mice from the GFP-global line. In contrast, striatal line mutant mice displayed an increase only in the number of dividing microglia in striatal and periventricular regions. CONCLUSIONS: Genetically programmed post-natal ablation of Drd1a-expressing neurons is associated with an extensive proliferative response involving multiple cell lineages. The nature of the tissue response has the potential not only to remove cellular debris but also to forge physiologically meaningful brain repair. Age related deficits in proliferation are seen in mutant lines. A blunted endogenous reparative response may underlie the cumulative deficits characteristic of age related neurodegeneration.
Assuntos
Doença de Huntington/patologia , Microglia/citologia , Neurogênese , Neurônios/citologia , Animais , Doenças dos Gânglios da Base/patologia , Contagem de Células , Linhagem da Célula , Proliferação de Células , Modelos Animais de Doenças , Antígeno Ki-67/análise , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Doenças Neurodegenerativas/patologia , FenótipoRESUMO
Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.
Assuntos
Mucosa Intestinal , Transdução de Sinais , Humanos , Linhagem da Célula , Mucosa Intestinal/metabolismo , Células-Tronco , Homeostase , Células Epiteliais/metabolismoRESUMO
Background: Glioblastoma is a high-grade aggressive neoplasm whose outcomes have not changed in decades. In the current treatment pathway, tumour growth continues and remains untreated for several weeks post-diagnosis. Intensified upfront therapy could target otherwise untreated tumour cells and improve the treatment outcome. POBIG will evaluate the safety and feasibility of single-fraction preoperative radiotherapy for newly diagnosed glioblastoma, assessed by the maximum tolerated dose (MTD) and maximum tolerated irradiation volume (MTIV). Methods: POBIG is an open-label, dual-centre phase I dose and volume escalation trial that has received ethical approval. Patients with a new radiological diagnosis of glioblastoma will be screened for eligibility. This is deemed sufficient due to the high accuracy of imaging and to avoid treatment delay. Eligible patients will receive a single fraction of preoperative radiotherapy ranging from 6 to 14 Gy followed by their standard of care treatment comprising maximal safe resection and postoperative chemoradiotherapy (60 Gy/30 fr) with concurrent and adjuvant temozolomide). Preoperative radiotherapy will be directed to the part of the tumour that is highest risk for remaining as postoperative residual disease (hot spot). Part of the tumour will remain unirradiated (cold spot) and sampled separately for diagnostic purposes. Dose/volume escalation will be guided by a Continual Reassessment Method (CRM) model. Translational opportunities will be afforded through comparison of irradiated and unirradiated primary glioblastoma tissue. Discussion: POBIG will help establish the role of radiotherapy in preoperative modalities for glioblastoma. Trial registration: NCT03582514 (clinicaltrials.gov).