Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1382: 39-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36029403

RESUMO

Aberrant glycosylation has been associated with several processes of tumorigenesis from cell signaling, migration and invasion, to immune regulation and metastasis formation. The biosynthesis of glycoconjugates is regulated through concerted and finely tuned enzymatic reactions. This includes the levels and activity of glycosyltransferases and glycosidases, nucleotide sugar metabolism, substrate availability, epigenetic condition, and cellular functional state. Glioblastoma (GBM) is the most aggressive brain tumor, frequently occurring in adults with overall survival not surpassing 17 months after diagnosis. GBM has been classified by the World Health Organization (WHO) as a grade 4 astrocytoma and stratified into G-CIMP, proneural, classical, and mesenchymal subtypes. Several biomolecular features associated with GBM aggressiveness have been elucidated; however, more studies are needed to elucidate the role of glycosylation in GBM pathology, looking at their potential as cancer targets. Here, we focus on the alteration of genes involved in protein N- and O-linked glycosylation in GBM. Specifically, the mRNA levels of glycogenes were analyzed using astrocytoma-TCGA-RNAseq datasets from public repositories. A total of 68 genes were differentially regulated in the most aggressive, mesenchymal subtype of GBM compared to the proneural and classical subtypes, and the expression of these genes was compared to normal brain tissues. Among them, we focused on 38 genes coding for proteins that belong to: 1) asparagine glycosylation (ALG); 2) glycosyltransferases (B3T, B4T); 3) fucosyltransferase (FUT); 4) acetylgalactosaminyltransferases (GALNT); 5) hexosaminidase (HEX); 6) mannosidase (MAN); 7) acetylglucosaminyltransferase (MGAT); 8) sialidase or neuraminidase (NEU); 9) solute carrier 35 family (SLC); and 10) sialyltransferase (ST). The differential expression of some genes was already reported in several solid tumors; however, several of them were found to be dysregulated in GBM for the first time. These data represent an important starting point to perform further orthogonal and functional validations to pinpoint the role of these glycogenes in GBM as diagnostic and therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicosilação , Glicosiltransferases , Humanos
2.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076905

RESUMO

Tumor cell infiltrative ability into surrounding brain tissue is a characteristic of diffusely infiltrative astrocytoma and is strongly associated with extracellular matrix (ECM) stiffness. Collagens are the most abundant ECM scaffolding proteins and contribute to matrix organization and stiffness. LOX family members, copper-dependent amine oxidases, participate in the collagen and elastin crosslinking that determine ECM tensile strength. Common IDH mutations in lower-grade gliomas (LGG) impact prognosis and have been associated with ECM stiffness. We analyzed the expression levels of LOX family members and matrisome-associated genes in astrocytoma stratified by malignancy grade and IDH mutation status. A progressive increase in expression of all five LOX family members according to malignancy grade was found. LOX, LOXL1, and LOXL3 expression correlated with matrisome gene expressions. LOXL1 correlations were detected in LGG with IDH mutation (IDHmut), LOXL3 correlations in LGG with IDH wild type (IDHwt) and strong LOX correlations in glioblastoma (GBM) were found. These increasing correlations may explain the increment of ECM stiffness and tumor aggressiveness from LGG-IDHmut and LGG-IDHwt through to GBM. The expression of the mechanosensitive transcription factor, ß-catenin, also increased with malignancy grade and was correlated with LOXL1 and LOXL3 expression, suggesting involvement of this factor in the outside-in signaling pathway.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Proteínas da Matriz Extracelular , Matriz Extracelular , Glioblastoma , Glioma , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Astrocitoma/genética , Neoplasias Encefálicas/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Expressão Gênica , Glioblastoma/genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Mutação
3.
J Clin Rheumatol ; 27(6S): S224-S231, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34227790

RESUMO

BACKGROUND/OBJECTIVE: The aim of this study was to evaluate the effects of exercise training on the ubiquitin-proteasome system (UPS) and genes related to autophagy on the skeletal muscle of patients with dermatomyositis (DM) and immune-mediated necrotizing myopathies (IMNMs). METHODS: Seven DM patients and 6 IMNM patients were treated for 12 weeks with a twice-weekly aerobic and resistance training exercise program. Aerobic capacity, muscle strength, and expression of genes in the skeletal muscle related to UPS and to autophagy were evaluated at the baseline and after the intervention. Moreover, only at the baseline, 10 healthy control individuals were also evaluated. RESULTS: The age of DM and IMNM patients was 49.8 and 58.5 years, respectively. Genes related to UPS were upregulated, whereas genes related to autophagy and antioxidative systems were downregulated only in the DM group when compared with control group. After completion of the exercise training program, several genes related to UPS were downregulated, whereas genes related to autophagy, mitochondrial pathways, and antioxidative systems were upregulated in both the DM and IMNM groups. CONCLUSIONS: Exercise training can increase genes related to autophagy, mitophagy, and lysosomal biogenesis in the skeletal muscle of patients. These results suggest an increase in the recycling of damaged proteins and organelles, which may also contribute to the performance and endurance of skeletal muscles in these patients. Furthermore, in patients with myositis, exercise training led to a decrease in genes related to UPS and an increase in genes related to antioxidative capacity. Therefore, this may also contribute to an attenuation of skeletal muscle loss and of the deleterious effects of oxidative stress on the skeletal muscle of these patients.


Assuntos
Miosite , Complexo de Endopeptidases do Proteassoma , Autofagia , Exercício Físico , Humanos , Pessoa de Meia-Idade , Músculo Esquelético , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitinas
4.
Neurol Sci ; 41(3): 691-694, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31728854

RESUMO

BACKGROUND: Ependymoma (EPN) is the third most common childhood cancer of the central nervous system. RELA fusion-positive EPN accounts for approximately 70% of all childhood supratentorial tumors and shows the worst prognosis among the supratentorial EPNs. TP53 mutation is infrequent in RELA fusions EPNs. In the population from the Southern region of Brazil, there is a high incidence of the germline TP53 p.R337H mutation that predisposes carriers to develop early-onset tumors. However, despite this high incidence, the frequency of this mutation among EPN patients remains to be determined. Here, we investigated the presence of the TP53 p.R337H mutation in a larger cohort of pediatric EPNs of three institutions located in the state of São Paulo, Brazil. METHODS: The TP53 p.R337H mutation was screened by conventional RT-PCR and Sanger sequencing in 49 pediatric EPNs diagnosed during the period from 1995 to 2016. RESULTS: We described for the first time a case of a 5-year-old girl with RELA fusion EPN with a heterozygous TP53 p.R337H mutation. CONCLUSIONS: The present finding indicates that the TP53 p.R337H germline mutation is uncommon in patients with EPN in Brazil and screening of pediatric patients RELA fusion EPN may be informative to better understand the role of TP53 germline mutations in the development and prognosis of these tumors.


Assuntos
Ependimoma/genética , Neoplasias Supratentoriais/genética , Proteína Supressora de Tumor p53/genética , Brasil/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Ependimoma/epidemiologia , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Neoplasias Supratentoriais/epidemiologia , Fator de Transcrição RelA
5.
Childs Nerv Syst ; 35(4): 689-694, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30631904

RESUMO

BACKGROUND: Ependymoma (EPN) is the third most common central nervous system tumor in childhood. Recent advances in the molecular classification of EPN revealed a supratentorial (ST) ependymoma subgroup characterized by C11orf95-RELA fusion. CASE REPORT: We describe a novel RELA-fusion composed by a chimeric transcript C11orf95-LOC-RELA in a supratentorial WHO grade II EPN occurring in a 4-year-old child. Metastatic loci at the brain, leptomeningeal involvement, and pulmonary nodules were identified at tumor recurrence. The child eventually died before 1 year after recurrence. CONCLUSION: This index case showed aggressive behavior and nuclear accumulation of p65/RELA.


Assuntos
Ependimoma/genética , Proteínas de Fusão Oncogênica/genética , Proteínas/genética , Neoplasias Supratentoriais/genética , Fator de Transcrição RelA/genética , Pré-Escolar , Ependimoma/patologia , Humanos , Masculino , Neoplasias Supratentoriais/patologia
6.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845661

RESUMO

Glioblastoma (GBM) is the most aggressive type of brain tumor, with an overall survival of 17 months under the current standard of care therapy. CD99, an over-expressed transmembrane protein in several malignancies, has been considered a potential target for immunotherapy. To further understand this potentiality, we analyzed the differential expression of its two isoforms in human astrocytoma specimens, and the CD99 involved signaling pathways in glioma model U87MG cell line. CD99 was also analyzed in GBM molecular subtypes. Whole transcriptomes by RNA-Seq of CD99-siRNA, and functional in vitro assays in CD99-shRNA, that are found in U87MG cells, were performed. Astrocytoma of different malignant grades and U87MG cells only expressed CD99 isoform 1, which was higher in mesenchymal and classical than in proneural GBM subtypes. Genes related to actin dynamics, predominantly to focal adhesion, and lamellipodia/filopodia formation were down-regulated in the transcriptome analysis, when CD99 was silenced. A decrease in tumor cell migration/invasion, and dysfunction of focal adhesion, were observed in functional assays. In addition, a striking morphological change was detected in CD99-silenced U87MG cells, further corroborating CD99 involvement in actin cytoskeleton rearrangement. Inhibiting the overexpressed CD99 may improve resectability and decrease the recurrence rate of GBM by decreasing tumor cells migration and invasion.


Assuntos
Antígeno 12E7/genética , Antígeno 12E7/metabolismo , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica/métodos , Glioblastoma/genética , Regulação para Cima , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes src/genética , Glioblastoma/metabolismo , Humanos , Invasividade Neoplásica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/farmacologia , Análise de Sequência de RNA
7.
Proc Natl Acad Sci U S A ; 112(31): 9704-9, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195750

RESUMO

Cell-free DNA shed by cancer cells has been shown to be a rich source of putative tumor-specific biomarkers. Because cell-free DNA from brain and spinal cord tumors cannot usually be detected in the blood, we studied whether the cerebrospinal fluid (CSF) that bathes the CNS is enriched for tumor DNA, here termed CSF-tDNA. We analyzed 35 primary CNS malignancies and found at least one mutation in each tumor using targeted or genome-wide sequencing. Using these patient-specific mutations as biomarkers, we identified detectable levels of CSF-tDNA in 74% [95% confidence interval (95% CI) = 57-88%] of cases. All medulloblastomas, ependymomas, and high-grade gliomas that abutted a CSF space were detectable (100% of 21 cases; 95% CI = 88-100%), whereas no CSF-tDNA was detected in patients whose tumors were not directly adjacent to a CSF reservoir (P < 0.0001, Fisher's exact test). These results suggest that CSF-tDNA could be useful for the management of patients with primary tumors of the brain or spinal cord.


Assuntos
Neoplasias Encefálicas/líquido cefalorraquidiano , DNA de Neoplasias/líquido cefalorraquidiano , Neoplasias da Medula Espinal/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , DNA de Neoplasias/genética , Demografia , Éxons/genética , Feminino , Genoma Humano , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Mutação/genética , Neoplasias da Medula Espinal/genética
8.
J Neurooncol ; 132(3): 383-391, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28283801

RESUMO

Serum amyloid A1 (SAA1) is a sensitive acute phase reactant primarily produced by the liver in response to acute inflammation. We have recently shown that SAA affects proliferation, migration, and invasion of glioblastoma cell lines, which suggest its participation in the malignant process. Consistently, levels of SAA have been used as a non-invasive biomarker for the prognosis of many cancers. In this study, we aimed to investigate SAA serum levels and expression of SAA genes in human astrocytomas tissues. Serum and tissue samples were obtained from patients with astrocytoma grades I to III and glioblastoma (GBM or grade IV). Levels of circulating SAA were significantly higher in the serum of patients with AGII-IV when compared to non-neoplastic samples derived from non-neoplastic patients (NN) (p > 0.0001). Quantitative real time PCR (qRT-PCR) of 148 astrocytomas samples (grades I-IV) showed that SAA1 mRNA was significantly higher in GBM when compared to AGI-III and NN samples (p < 0.0001). Immunohistochemistry analysis revealed cytoplasmic positivity for SAA in GBM. There was no correlation of SAA1 with clinical end-point of overall survival among GBM patients. However, it was found a positive correlation between SAA1 and genes involved in tumor progression, such as: HIF1A (r = 0.50; p < 0.00001), CD163 (r = 0.52; p < 0.00001), CXCR4 (r = 0.42; p < 0.00001) and CXCR7 (r = 0.33; p = 0.002). In conclusions, we show that astrocytoma patients have increased levels of serum SAA and SAA1 is expressed and secreted in GBM, and its co-expression with tumor-related genes supports its involvement in GBM angiogenesis and progression.


Assuntos
Astrocitoma/patologia , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteína Amiloide A Sérica/análise , Adulto , Idoso , Astrocitoma/sangue , Astrocitoma/mortalidade , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/mortalidade , Intervalo Livre de Doença , Feminino , Glioblastoma/sangue , Glioblastoma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteína Amiloide A Sérica/metabolismo , Regulação para Cima , Adulto Jovem
9.
Proteome Sci ; 14: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973435

RESUMO

BACKGROUND: Maternal Embryonic Leucine Zipper Kinase (MELK) is a serine/threonine kinase involved in cell cycle, differentiation, proliferation, and apoptosis. These multiple features are consistent with it being a potential anticancer target. Nevertheless, the MELK pathway in tumorigenesis is not yet completely understood. This study aims to identify proteins associated with MELK pathway in astrocytomas. To this end, proteomic data of the human glioma cell line U87MG transfected with siRNA for MELK were compared with non-target transfected control cells and compared with oligonucleotide microarray data. RESULTS: In both assays, we identified stathmin/oncoprotein 18 (STMN1), involved in cell cycle. STMN1 gene expression was further assessed in a series of 154 astrocytomas and 22 non-neoplastic brain samples by qRT-PCR. STMN1 expression was significantly increased in malignant diffusely infiltrative astrocytomas compared with pilocytic astrocytoma (p < 0.0001). A strong correlation between MELK and STMN1 expressions was observed (r = 0.741, p < 0.0001) in glioblastoma (GBM) samples. However, no difference on survival times was found when compared GBM cases with upregulated and downregulated STMN1 (Breslow = 0.092, median survival time: 11 and 13 months, respectively). Functional assays knocking down MELK by siRNA in GBM cell line showed that gene and protein expression of both MELK and stathmin were diminished. On the other hand, when the same analysis was performed for STMN1, only stathmin gene and protein was silenced. CONCLUSIONS: The results presented herein point stahtmin as a downstream target in the MELK pathway that plays a role in malignant progression of astrocytomas.

10.
Neuropathology ; 35(4): 312-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25946121

RESUMO

Ependymomas are tumors of the CNS. Although cyclin D1 overexpression has been related to several cancers, its prognostic value in ependymomas has not yet been fully established. We evaluated cyclin D1 expression by an immunohistochemistry analysis of 149 samples of ependymomas, including some relapses, corresponding to 121 patients. Eighty-one patients were adults, 60 were intracranial cases and 92 tumors were grade II. Gross total resection (GTR) was achieved in 62% of cases, and relapse was confirmed in 41.4% of cases. Cyclin D1 protein expression was analyzed by immunohistochemistry and scored with a labeling index (LI) calculated as the percentage of positively stained cells by intensity. We also analyzed expression of CCND1 and NOTCH1 in 33 samples of ependymoma by quantitative real-time PCR. A correlation between cyclin D1 LI score and anaplastic cases (P < 0.001), supratentorial location (P < 0.001) and age (P = 0.001) were observed. A stratified analysis demonstrated that cyclin D1 protein expression was strong in tumors with a supratentorial location, independent of the histological grade or age. Relapse was more frequent in cases with a higher cyclin D1 LI score (P = 0.046), and correlation with progression-free survival was observed in cases with GTR (P = 0.002). Only spinal canal tumor location and GTR were suggestive markers of PFS in multivarite analyses. Higher expression levels were observed in anaplastic cases for CCND1 (P = 0.002), in supratentorial cases for CCND1 (P = 0.008) and NOTCH1 (P = 0.011). There were correlations between the cyclin D1 mRNA and protein expression levels (P < 0.0001) and between CCND1 and NOTCH1 expression levels (P = 0.003). Higher cyclin D1 LI was predominant in supratentorial location and predict relapse in GTR cases. Cyclin D1 could be used as an immunohistochemical marker to guide follow-up and treatment in these cases.


Assuntos
Ciclina D1/metabolismo , Ependimoma/metabolismo , Ependimoma/patologia , Recidiva Local de Neoplasia/diagnóstico , Neoplasias Supratentoriais/metabolismo , Neoplasias Supratentoriais/patologia , Adolescente , Adulto , Biomarcadores Tumorais/metabolismo , Intervalo Livre de Doença , Ependimoma/cirurgia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Receptor Notch1/metabolismo , Neoplasias Supratentoriais/cirurgia , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 109(35): 14164-9, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22891331

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Camundongos Nus , PTEN Fosfo-Hidrolase/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transplante Heterólogo , Células Tumorais Cultivadas , Tirosina/metabolismo
12.
Neuropathology ; 34(4): 343-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24612214

RESUMO

Glioblastoma (GBM), the most frequent and aggressive brain tumor, is characterized by marked angiogenesis directly related to invasiveness and poor prognosis. Hypoxia is considered to be an important stimulus for angiogenesis by inducing hypoxia-inducible factor 1-alpha (HIF-1α) overexpression that activates platelet-derived growth factor (PDGF) and VEGF. The aim of this study is to analyze the expression of PDGF-C, VEGF in endothelial and tumor cells of GBM and their relation to HIF-1α expression. Two hundred and eight GBM cases were studied by tissue microarray immunohistochemical preparation. Expression of HIF-1α, VEGF and PDGF-C was observed in 184 (88.5%), 131 (63%) and 160 (76.9%) tumor cases, respectively. The numbers of vessels were quantified by CD34, PDGF-C, VEGF and CD105 staining, and were in median 20, 16, 5 and 6, respectively. The GBMs that showed positive or negative expression for HIF-1α showed a median vascular density of 30 and 14, respectively, for CD34 (P < 0.015). Positive expression for HIF-1α was correlated with VEGF and PDGF-C expression in tumors (P < 0.001). There was a significant correlation between VEGF and PDGF-C expression in the cytoplasm of GBM tumor cells (P < 0.0001). We showed that VEGF expression in tumor cells was correlated with its expression in blood vessels (P < 0.0001). Endothelial cells with PDGF-C and VEGF positive expression were also positive for CD105 and their nuclei for Ki-67, confirming the neoangiogenic and proliferative influence of VEGF and PDGF-C. VEGF nuclear staining in tumor cells (P = 0.002) as well as nuclear staining for HIF-1α and VEGF (P = 0.005) correlated with survival. In summary, our present findings of the concomitant upregulation of PDGF-C with VEGF in GBM tumor cells and vessels further reinforce the benefit of using combined anti-angiogenic approaches to potentially improve the therapeutic response for GBM.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/metabolismo , Glioblastoma/irrigação sanguínea , Glioblastoma/metabolismo , Linfocinas/metabolismo , Neovascularização Patológica/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD/metabolismo , Neoplasias Encefálicas/mortalidade , Endoglina , Células Endoteliais/metabolismo , Feminino , Glioblastoma/mortalidade , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo , Análise de Sobrevida , Adulto Jovem
13.
Int J Rheum Dis ; 27(1): e14965, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933530

RESUMO

INTRODUCTION: In a recent study, we have shown that atorvastatin is clinically safe for dermatomyositis (DM) and antisynthetase syndrome (ASS) patients with dyslipidemia. Herein, we showed in an unprecedented way, the safety of atorvastatin on the muscular tissues of these patients. METHODS: Transcriptome analysis was performed on samples of the vastus lateralis muscle obtained at baseline and after 12 weeks of atorvastatin (20 mg/day) intervention in DM or ASS patients with dyslipidemia [6DM and 5ASS received atorvastatin, and 2DM and 3ASS received placebo]. The results were analyzed considering differences in expression fold change before and after treatment. Histological and histochemical analyses were also performed. RESULTS: In both groups, no significant changes were observed in genes related to the mitochondrial, oxidative, insulin, lipid, and fibrogenic pathways. Histological analysis showed a slight variability in the fiber size that was preserved after the intervention. In addition, the mosaic of muscle fibers was preserved in the internal architecture of the fibers and all histological regions. No fiber necrosis or atrophy, focal failures, subsarcolemmal accumulation, lipids, areas of fibrosis, or alterations in mitochondrial activity were observed. All muscle fibers were labeled for MHC I. CONCLUSION: Atorvastatin did not promote significant changes in the expression of genes related to mitochondrial, oxidative, insulin, lipid, and fibrogenic pathways in the muscle tissues of DM and ASS patients with dyslipidemia. Atorvastatin did not also promote histological and histochemical changes in muscle tissues. Our results reinforce the safety of the administration of atorvastatin to treat dyslipidemia in patients with DM and ASS.


Assuntos
Dermatomiosite , Dislipidemias , Insulinas , Miosite , Humanos , Atorvastatina/efeitos adversos , Dermatomiosite/diagnóstico , Dermatomiosite/tratamento farmacológico , Miosite/diagnóstico , Miosite/tratamento farmacológico , Miosite/patologia , Músculo Esquelético/patologia , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Insulinas/uso terapêutico
14.
Arch Rheumatol ; 38(2): 189-199, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37680507

RESUMO

Objectives: This study aims to evaluate the effects of exercise training on intramuscular lipid content and genes related to insulin pathway in patients with systemic autoimmune myopathies (SAMs). Patients and methods: Between January 2016 and May 2019, a total of seven patients with dermatomyositis (DM; 3 males, 4 females; mean age: 49.8±2.3 years; range, 43 to 54 years), six with immune mediated necrotizing myopathy (IMNM; 3 males, 3 females; mean age: 58.5±10.6 years; range, 46 to 74 years), and 10 control individuals (CTRL group; 4 males, 6 females; mean age: 48.7±3.9 years; range, 41 to 56 years) were included. The muscle biopsy before and after the intervention was performed to evaluate the intramuscular lipid content. Patients underwent a combined exercise training program for 12 weeks. Skeletal muscle gene expression was analyzed and the DM versus CTRL group, DM pre- and post-, and IMNM pre- and post-intervention were compared. Results: The DM group had a higher intramuscular lipid content in type II muscle fibers compared to the CTRL group. After the intervention, there was a reduction of lipid content in type I and II fibers in DM and IMNM group. The CTRL group showed a significantly higher expression of genes related to insulin and lipid oxidation pathways (AMPKß2, AS160, INSR, PGC1-α, PI3K, and RAB14) compared to the DM group. After exercise training, there was an increase gene expression related to insulin pathway and lipid oxidation in DM group (AMPKß2, AS160, INSR, PGC1-α, PI3K, and RAB14) and in IMNM group (AKT2, AMPKß2, RAB10, RAB14, and PGC1-α). Conclusion: Exercise training attenuated the amount of fat in type I and II muscle fibers in patients with DM and IMNM and increased gene expression related to insulin pathways and lipid oxidation in DM and IMNM. These results suggest that exercise training can improve the quality and metabolic functions of skeletal muscle in these diseases.

15.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765551

RESUMO

Glioblastoma (GBM) is an aggressive brain cancer associated with poor overall survival. The metabolic status and tumor microenvironment of GBM cells have been targeted to improve therapeutic strategies. TLR4 is an important innate immune receptor capable of recognizing pathogens and danger-associated molecules. We have previously demonstrated the presence of TLR4 in GBM tumors and the decreased viability of the GBM tumor cell line after lipopolysaccharide (LPS) (TLR4 agonist) stimulation. In the present study, metformin (MET) treatment, used in combination with temozolomide (TMZ) in two GBM cell lines (U87MG and A172) and stimulated with LPS was analyzed. MET is a drug widely used for the treatment of diabetes and has been repurposed for cancer treatment owing to its anti-proliferative and anti-inflammatory actions. The aim of the study was to investigate MET and LPS treatment in two GBM cell lines with different metabolic statuses. MET treatment led to mitochondrial respiration blunting and oxidative stress with superoxide production in both cell lines, more markedly in U87MG cells. Decreased cell viability after MET + TMZ and MET + LPS + TMZ treatment was observed in both cell lines. U87MG cells exhibited apoptosis after MET + LPS + TMZ treatment, promoting increased ER stress, unfolded protein response, and BLC2 downregulation. LPS stimulation of U87MG cells led to upregulation of SOD2 and genes related to the TLR4 signaling pathway, including IL1B and CXCL8. A172 cells attained upregulated antioxidant gene expression, particularly SOD1, TXN and PRDX1-5, while MET treatment led to cell-cycle arrest. In silico analysis of the TCGA-GBM-RNASeq dataset indicated that the glycolytic plurimetabolic (GPM)-GBM subtype had a transcriptomic profile which overlapped with U87MG cells, suggesting GBM cases exhibiting this metabolic background with an activated inflammatory TLR4 pathway may respond to MET treatment. For cases with upregulated CXCL8, coding for IL8 (a pro-angiogenic factor), combination treatment with an IL8 inhibitor may improve tumor growth control. The A172 cell line corresponded to the mitochondrial (MTC)-GBM subtype, where MET plus an antioxidant inhibitor, such as anti-SOD1, may be indicated as a combinatory therapy.

16.
J Neurosurg ; 138(3): 649-662, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029259

RESUMO

OBJECTIVE: The authors searched for genetic and transcriptional signatures associated with tumor progression and recurrence in their cohort of patients with meningiomas, combining the analysis of targeted exome, NF2-LOH, transcriptome, and protein expressions. METHODS: The authors included 91 patients who underwent resection of intracranial meningioma at their institution between June 2000 and November 2007. The search of somatic mutations was performed by Next Generation Sequencing through a customized panel and multiplex ligation-dependent probe amplification for NF2 loss of heterozygosity. The transcriptomic profile was analyzed by QuantSeq 3' mRNA-Seq. The differentially expressed genes of interest were validated at the protein level analysis by immunohistochemistry. RESULTS: The transcriptomic analysis identified an upregulated set of genes related to metabolism and cell cycle and downregulated genes related to immune response and extracellular matrix remodeling in grade 2 (atypical) meningiomas, with a significant difference in recurrent compared with nonrecurrent cases. EZH2 nuclear positivity associated with grade 2, particularly with recurrent tumors and EZH2 gene expression level, correlated positively with the expression of genes related to cell cycle and negatively to genes related to immune response and regulation of cell motility. CONCLUSIONS: The authors identified modules of dysregulated genes in grade 2 meningiomas related to the activation of oxidative metabolism, cell division, cell motility due to extracellular remodeling, and immune evasion that were predictive of survival and exhibited significant correlations with EZH2 expression.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/cirurgia , Neoplasias Meníngeas/cirurgia , Recidiva Local de Neoplasia/patologia , Ciclo Celular , Divisão Celular , Proteína Potenciadora do Homólogo 2 de Zeste/genética
17.
Neurooncol Adv ; 5(1): vdad147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024245

RESUMO

Background: Infiltration is a life-threatening growth pattern in malignant astrocytomas and a significant cause of therapy resistance. It results in the tumor cell spreading deeply into the surrounding brain tissue, fostering tumor recurrence and making complete surgical resection impossible. We need to thoroughly understand the mechanisms underlying diffuse infiltration to develop effective therapies. Methods: We integrated in vitro and in vivo functional assays, RNA sequencing, clinical, and expression information from public data sets to investigate the role of ADAM23 expression coupling astrocytoma's growth and motility. Results: ADAM23 downregulation resulted in increased infiltration, reduced tumor growth, and improved overall survival in astrocytomas. Additionally, we show that ADAM23 deficiency induces γ-secretase (GS) complex activity, contributing to the production and deposition of the Amyloid-ß and release of NICD. Finally, GS ablation in ADAM23-low astrocytomas induced a significant inhibitory effect on the invasive programs. Conclusions: Our findings reveal a role for ADAM23 in regulating the balance between cell proliferation and invasiveness in astrocytoma cells, proposing GS inhibition as a therapeutic option in ADAM23 low-expressing astrocytomas.

18.
Exp Gerontol ; 168: 111932, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995312

RESUMO

AIMS: Mitochondrial (mt) DNA replication is strongly associated with oxidative stress, a condition triggered by aging and hyperglycemia, both of which contribute to mitophagy disruption and inflammation. This observational exploratory study evaluated mtDNA-copy number (mtDNA-CN) and expression of genes involved in mitochondriogenesis (PPARGC1A, TFAM, TFB1M, TFB2M), mitophagy (PINK1, PRKN), and inflammatory pathways triggered by hyperglycemia (TXNIP, NLRP3, NFKB1), in the postcentral gyrus of adults and older individuals with and without type 2 diabetes mellitus (T2D). MAIN METHODS: Quantitative real-time PCR was employed to evaluate mtDNA-CN and gene expression; tissue autofluorescence, a marker of aging and of cells with damaged organelles, was also quantified. KEY FINDINGS: No correlation was found between age and mtDNA-CN, but a direct correlation was observed for cases with mtDNA-CN >1000 (r = 0.41). The mtDNA-CN >1000 group had greater tissue autofluorescence and higher body mass index compared to the mtDNA-CN <1000 group (BMI; 25.7 vs 22.0 kg/m2, respectively). mtDNA-CN correlated with tissue autofluorescence in the overall sample (r = 0.55) and in the T2D group (r = 0.64). PINK and PRKN expressions were inversely correlated with age. Mitochondriogenesis genes and TXNIP expressions were higher in the T2D group, and correlations among the mitochondriogenesis genes were also stronger in this group, relative to the subgroup with mtDNA-CN >1000.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Envelhecimento/genética , Índice de Massa Corporal , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Diabetes Mellitus Tipo 2/genética , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Córtex Somatossensorial/metabolismo
19.
World Neurosurg ; 147: e16-e24, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33189916

RESUMO

OBJECTIVE: Traumatic brain injury (TBI) is a health problem worldwide, and therapeutic strategies to enhance brain tissue repair to lessen neurologic sequels are imperative. We aimed to analyze the impact of the inflammatory process in TBI through CXCR4 and CXCR7 chemokine receptors and their ligands' CXCL11 and CXCL12 expression profile in search for potential new druggable targets. METHODS: Twelve pericontusional tissues from severe TBI patients submitted to surgical treatment, and 20 control brain tissues from normal autopsy were analyzed for expression profile by real-time quantitative-polymerase chain reaction. CXCR7 and CXCR4 protein expressions were analyzed by immunohistochemistry. The findings were correlated with the clinical evolution. RESULTS: Increased gene expression of both receptors and their ligands was observed in TBI compared with controls, presenting high sensitivity and specificity to differentiate TBI from normal control (area under the curve ranging from 0.85 to 0.98, P < 0.001). In particular, CXCR7 expression highly correlated with CXCR4 and both ligands' expressions in TBI. Higher immunoreactions for CXCR7 and CXCR4 were identified in neurons and endothelial cells of TBI samples compared with controls. The patients presenting upregulated chemokine expression levels showed a trend toward favorable clinical evolution at up to 6 months of follow-up. CONCLUSIONS: The neuroprotective trend of CXCR4, CXCR7, CXCL11, and CXCL12 in TBI observed in this initial analysis warrants further studies with more patients, analyzing the involved signaling pathways for the development of new therapeutic strategies for TBI.


Assuntos
Contusão Encefálica/genética , Quimiocina CXCL11/genética , Quimiocina CXCL12/genética , Receptores CXCR4/genética , Receptores CXCR/genética , Adulto , Idoso , Contusão Encefálica/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Estudos de Casos e Controles , Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/metabolismo , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Adulto Jovem
20.
Cancer Metab ; 9(1): 18, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910646

RESUMO

BACKGROUND: Glioblastoma is the most frequent and high-grade adult malignant central nervous system tumor. The prognosis is still poor despite the use of combined therapy involving maximal surgical resection, radiotherapy, and chemotherapy. Metabolic reprogramming currently is recognized as one of the hallmarks of cancer. Glutamine metabolism through glutaminolysis has been associated with tumor cell maintenance and survival, and with antioxidative stress through glutathione (GSH) synthesis. METHODS: In the present study, we analyzed the glutaminolysis-related gene expression levels in our cohort of 153 astrocytomas of different malignant grades and 22 non-neoplastic brain samples through qRT-PCR. Additionally, we investigated the protein expression profile of the key regulator of glutaminolysis (GLS), glutamate dehydrogenase (GLUD1), and glutamate pyruvate transaminase (GPT2) in these samples. We also investigated the glutathione synthase (GS) protein profile and the GSH levels in different grades of astrocytomas. The differential gene expressions were validated in silico on the TCGA database. RESULTS: We found an increase of glutaminase isoform 2 gene (GLSiso2) expression in all grades of astrocytoma compared to non-neoplastic brain tissue, with a gradual expression increment in parallel to malignancy. Genes coding for GLUD1 and GPT2 expression levels varied according to the grade of malignancy, being downregulated in glioblastoma, and upregulated in lower grades of astrocytoma (AGII-AGIII). Significant low GLUD1 and GPT2 protein levels were observed in the mesenchymal subtype of GBM. CONCLUSIONS: In glioblastoma, particularly in the mesenchymal subtype, the downregulation of both genes and proteins (GLUD1 and GPT2) increases the source of glutamate for GSH synthesis and enhances tumor cell fitness due to increased antioxidative capacity. In contrast, in lower-grade astrocytoma, mainly in those harboring the IDH1 mutation, the gene expression profile indicates that tumor cells might be sensitized to oxidative stress due to reduced GSH synthesis. The measurement of GLUD1 and GPT2 metabolic substrates, ammonia, and alanine, by noninvasive MR spectroscopy, may potentially allow the identification of IDH1mut AGII and AGIII progression towards secondary GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA