Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 108(7): 1793-1802, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779592

RESUMO

Cusatuzumab is a high-affinity, anti-CD70 monoclonal antibody under investigation in acute myeloid leukemia (AML). This two-part, open-label, multicenter, phase I/II trial evaluated cusatuzumab plus azacitidine in patients with newly diagnosed AML ineligible for intensive chemotherapy. Patients received a single dose of cusatuzumab at one of four dose levels (1, 3, 10, or 20 mg/kg) 14 days before starting combination therapy. In phase I dose escalation, cusatuzumab was then administered on days 3 and 17, in combination with azacitidine (75 mg/m2) on days 1-7, every 28 days. The primary objective in phase I was to determine the recommended phase II dose (RP2D) of cusatuzumab plus azacitidine. The primary objective in phase II was efficacy at the RP2D (selected as 10 mg/kg). Thirty-eight patients were enrolled: 12 in phase I (three per dose level; four with European LeukemiaNet 2017 adverse risk) and 26 in phase II (21 with adverse risk). An objective response (≥partial remission) was achieved by 19/38 patients (including 8/26 in phase II); 14/38 achieved complete remission. Eleven patients (37.9%) achieved an objective response among the 29 patients in phase I and phase II treated at the RP2D. At a median follow-up of 10.9 months, median duration of first response was 4.5 months and median overall survival was 11.5 months. The most common treatment-emergent adverse events were infections (84.2%) and hematologic toxicities (78.9%). Seven patients (18.4%) reported infusion-related reactions, including two with grade 3 events. Thus, cusatuzumab/azacitidine appears generally well tolerated and shows preliminary efficacy in this setting. Investigation of cusatuzumab combined with current standard-of-care therapy, comprising venetoclax and azacitidine, is ongoing.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Azacitidina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico
2.
Blood ; 130(3): 297-309, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28495792

RESUMO

The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia.


Assuntos
Linfócitos B/imunologia , Ligante CD27/imunologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Linfócitos B/patologia , Ligante CD27/genética , Expressão Gênica , Humanos , Vigilância Imunológica , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/patologia , Ligantes , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Análise de Sobrevida , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Transplante Heterólogo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
3.
J Immunol ; 193(10): 5273-83, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305320

RESUMO

Neutropenia is probably the strongest known predisposition to infection with otherwise harmless environmental or microbiota-derived species. Because initial swarming of neutrophils at the site of infection occurs within minutes, rather than the hours required to induce "emergency granulopoiesis," the relevance of having high numbers of these cells available at any one time is obvious. We observed that germ-free (GF) animals show delayed clearance of an apathogenic bacterium after systemic challenge. In this article, we show that the size of the bone marrow myeloid cell pool correlates strongly with the complexity of the intestinal microbiota. The effect of colonization can be recapitulated by transferring sterile heat-treated serum from colonized mice into GF wild-type mice. TLR signaling was essential for microbiota-driven myelopoiesis, as microbiota colonization or transferring serum from colonized animals had no effect in GF MyD88(-/-)TICAM1(-/-) mice. Amplification of myelopoiesis occurred in the absence of microbiota-specific IgG production. Thus, very low concentrations of microbial Ags and TLR ligands, well below the threshold required for induction of adaptive immunity, sets the bone marrow myeloid cell pool size. Coevolution of mammals with their microbiota has probably led to a reliance on microbiota-derived signals to provide tonic stimulation to the systemic innate immune system and to maintain vigilance to infection. This suggests that microbiota changes observed in dysbiosis, obesity, or antibiotic therapy may affect the cross talk between hematopoiesis and the microbiota, potentially exacerbating inflammatory or infectious states in the host.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Antígenos de Bactérias/imunologia , Microbiota/imunologia , Células Mieloides/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Mielopoese/imunologia , Transdução de Sinais/imunologia , Imunidade Adaptativa , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Evolução Biológica , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Regulação da Expressão Gênica , Vida Livre de Germes , Imunidade Inata , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/microbiologia , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Mielopoese/genética
4.
Cancer Immunol Immunother ; 63(4): 381-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487961

RESUMO

PURPOSE: Survivin is a member of the inhibitor-of-apoptosis family. Essential for tumor cell survival and overexpressed in most cancers, survivin is a promising target for anti-cancer immunotherapy. Immunogenicity has been demonstrated in multiple cancers. Nonetheless, few clinical trials have demonstrated survivin-vaccine-induced immune responses. EXPERIMENTAL DESIGN: This phase I trial was conducted to test whether vaccine EMD640744, a cocktail of five HLA class I-binding survivin peptides in Montanide(®) ISA 51 VG, promotes anti-survivin T-cell responses in patients with solid cancers. The primary objective was to compare immunologic efficacy of EMD640744 at doses of 30, 100, and 300 µg. Secondary objectives included safety, tolerability, and clinical efficacy. RESULTS: In total, 49 patients who received ≥2 EMD640744 injections with available baseline- and ≥1 post-vaccination samples [immunologic-diagnostic (ID)-intention-to-treat] were analyzed by ELISpot- and peptide/MHC-multimer staining, revealing vaccine-activated peptide-specific T-cell responses in 31 patients (63 %). This cohort included the per study protocol relevant ID population for the primary objective, i.e., T-cell responses by ELISpot in 17 weeks following first vaccination, as well as subjects who discontinued the study before week 17 but showed responses to the treatment. No dose-dependent effects were observed. In the majority of patients (61 %), anti-survivin responses were detected only after vaccination, providing evidence for de novo induction. Best overall tumor response was stable disease (28 %). EMD640744 was well tolerated; local injection-site reactions constituted the most frequent adverse event. CONCLUSIONS: Vaccination with EMD640744 elicited T-cell responses against survivin peptides in the majority of patients, demonstrating the immunologic efficacy of EMD640744.


Assuntos
Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Vacinação , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/uso terapêutico , Relação Dose-Resposta Imunológica , Feminino , Antígenos HLA-A/imunologia , Antígeno HLA-B7/imunologia , Humanos , Testes de Liberação de Interferon-gama , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Survivina , Especificidade do Receptor de Antígeno de Linfócitos T
5.
Cancer Immunol Res ; 12(7): 921-943, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38683145

RESUMO

The prognosis of patients with acute myeloid leukemia (AML) is limited, especially for elderly or unfit patients not eligible for hematopoietic stem cell (HSC) transplantation. The disease is driven by leukemic stem cells (LSCs), which are characterized by clonal heterogeneity and resistance to conventional therapy. These cells are therefore believed to be a major cause of progression and relapse. We designed MP0533, a multispecific CD3-engaging designed ankyrin repeat protein (DARPin) that can simultaneously bind to three antigens on AML cells (CD33, CD123, and CD70), aiming to enable avidity-driven T cell-mediated killing of AML cells coexpressing at least two of the antigens. In vitro, MP0533 induced selective T cell-mediated killing of AML cell lines, as well as patient-derived AML blasts and LSCs, expressing two or more target antigens, while sparing healthy HSCs, blood, and endothelial cells. The higher selectivity also resulted in markedly lower levels of cytokine release in normal human blood compared to single antigen-targeting T-cell engagers. In xenograft AML mice models, MP0533 induced tumor-localized T-cell activation and cytokine release, leading to complete eradication of the tumors while having no systemic adverse effects. These studies show that the multispecific-targeting strategy used with MP0533 holds promise for improved selectivity toward LSCs and efficacy against clonal heterogeneity, potentially bringing a new therapeutic option to this group of patients with a high unmet need. MP0533 is currently being evaluated in a dose-escalation phase 1 study in patients with relapsed or refractory AML (NCT05673057).


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Linfócitos T , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Animais , Camundongos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Subunidade alfa de Receptor de Interleucina-3/imunologia , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Complexo CD3/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica
6.
Front Immunol ; 14: 1243997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744361

RESUMO

Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). It is known that early genetic mutations in post-germinal center B/plasma cells are the cause of myelomagenesis. The acquisition of additional chromosomal abnormalities and distinct mutations further promote the outgrowth of malignant plasma cell populations that are resistant to conventional treatments, finally resulting in relapsed and therapy-refractory terminal stages of MM. In addition, myeloma cells are supported by autocrine signaling pathways and the tumor microenvironment (TME), which consists of diverse cell types such as stromal cells, immune cells, and components of the extracellular matrix. The TME provides essential signals and stimuli that induce proliferation and/or prevent apoptosis. In particular, the molecular pathways by which MM cells interact with the TME are crucial for the development of MM. To generate successful therapies and prevent MM recurrence, a thorough understanding of the molecular mechanisms that drive MM progression and therapy resistance is essential. In this review, we summarize key mechanisms that promote myelomagenesis and drive the clonal expansion in the course of MM progression such as autocrine signaling cascades, as well as direct and indirect interactions between the TME and malignant plasma cells. In addition, we highlight drug-resistance mechanisms and emerging therapies that are currently tested in clinical trials to overcome therapy-refractory MM stages.


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Plasmócitos/metabolismo , Medula Óssea/metabolismo , Evolução Clonal/genética , Microambiente Tumoral/genética
7.
Sci Signal ; 16(800): eadd7705, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37643244

RESUMO

Cell stemness is characterized by quiescence, pluripotency, and long-term self-renewal capacity. Therapy-resistant leukemic stem cells (LSCs) are the primary cause of relapse in patients with chronic and acute myeloid leukemia (CML and AML). However, the same signaling pathways frequently support stemness in both LSCs and normal hematopoietic stem cells (HSCs), making LSCs difficult to therapeutically target. In cell lines and patient samples, we found that interleukin-33 (IL-33) signaling promoted stemness only in leukemia cells in a subtype-specific manner. The IL-33 receptor ST2 was abundant on the surfaces of CD34+ BCR/ABL1 CML and CD34+ AML cells harboring AML1/ETO and DEK/NUP214 translocations or deletion of chromosome 9q [del(9q)]. The cell surface abundance of ST2, which was lower or absent on other leukemia subtypes and HSCs, correlated with stemness, activated Wnt signaling, and repressed Notch signaling. IL-33-ST2 signaling promoted the maintenance and expansion of AML1/ETO-, DEK/NUP214-, and BCR/ABL1-positive LSCs in culture and in mice by activating Wnt, MAPK, and NF-κB signaling. Wnt signaling and its inhibition of the Notch pathway up-regulated the expression of the gene encoding ST2, thus forming a cell-autonomous loop. IL-33-ST2 signaling promoted the resistance of CML cells to the tyrosine kinase inhibitor (TKI) nilotinib and of AML cells to standard chemotherapy. Thus, inhibiting IL-33-ST2 signaling may target LSCs to overcome resistance to chemotherapy or TKIs in these subtypes of leukemia.


Assuntos
Interleucina-33 , Leucemia Mieloide , Animais , Camundongos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/genética , NF-kappa B , Via de Sinalização Wnt
8.
Cell Death Discov ; 9(1): 55, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765038

RESUMO

Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis.

9.
Nat Commun ; 14(1): 3342, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291246

RESUMO

Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Mutação , Oncogenes , Genômica
10.
J Exp Med ; 203(9): 2145-55, 2006 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-16923852

RESUMO

Neutralizing antibody (nAb) responses to lymphocytic choriomeningitis virus (LCMV) in mice and immunodeficiency virus and hepatitis C virus in humans are usually weak and slow to develop. This may be the result of structural properties of the surface glycoprotein, a low frequency of B cells with neutralizing specificity, and the necessity of prolonged affinity maturation of specific nAbs. In this study, we show that during LCMV infection, CD27 signaling on CD4+ T cells enhances the secretion of interferon-gamma and tumor necrosis factor-alpha. These inflammatory cytokines lead to the destruction of splenic architecture and immunodeficiency with reduced and delayed virus-specific nAb responses. Consequently, infection with the otherwise persistent LCMV strain Docile was eliminated after CD27 signaling was blocked. Our data provide a novel mechanism by which LCMV avoids nAb responses and suggest that blocking the CD27-CD70 interaction may be an attractive strategy to prevent chronic viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Transdução de Sinais , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Transferência Adotiva , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Antígenos CD/imunologia , Ligante CD27 , Linfócitos T CD4-Positivos/metabolismo , Doença Crônica , Humanos , Terapia de Imunossupressão , Interferon gama/imunologia , Coriomeningite Linfocítica/virologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Testes de Neutralização , Baço/citologia , Baço/imunologia , Baço/patologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/imunologia , Fatores de Necrose Tumoral/imunologia
11.
Front Immunol ; 13: 996746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211376

RESUMO

While inhibitory Siglec receptors are known to regulate myeloid cells, less is known about their expression and function in lymphocytes subsets. Here we identified Siglec-7 as a glyco-immune checkpoint expressed on non-exhausted effector memory CD8+ T cells that exhibit high functional and metabolic capacities. Seahorse analysis revealed higher basal respiration and glycolysis levels of Siglec-7+ CD8+ T cells in steady state, and particularly upon activation. Siglec-7 polarization into the T cell immune synapse was dependent on sialoglycan interactions in trans and prevented actin polarization and effective T cell responses. Siglec-7 ligands were found to be expressed on both leukemic stem cells and acute myeloid leukemia (AML) cells suggesting the occurrence of glyco-immune checkpoints for Siglec-7+ CD8+ T cells, which were found in patients' peripheral blood and bone marrow. Our findings project Siglec-7 as a glyco-immune checkpoint and therapeutic target for T cell-driven disorders and cancer.


Assuntos
Actinas , Leucemia Mieloide Aguda , Antígenos de Diferenciação Mielomonocítica , Linfócitos T CD8-Positivos , Humanos , Lectinas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
12.
Leukemia ; 36(11): 2634-2646, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36163264

RESUMO

Disease progression and relapse of chronic myeloid leukemia (CML) are caused by therapy resistant leukemia stem cells (LSCs), and cure relies on their eradication. The microenvironment in the bone marrow (BM) is known to contribute to LSC maintenance and resistance. Although leukemic infiltration of the spleen is a hallmark of CML, it is unknown whether spleen cells form a niche that maintains LSCs. Here, we demonstrate that LSCs preferentially accumulate in the spleen and contribute to disease progression. Spleen LSCs were located in the red pulp close to red pulp macrophages (RPM) in CML patients and in a murine CML model. Pharmacologic and genetic depletion of RPM reduced LSCs and decreased their cell cycling activity in the spleen. Gene expression analysis revealed enriched stemness and decreased myeloid lineage differentiation in spleen leukemic stem and progenitor cells (LSPCs). These results demonstrate that splenic RPM form a niche that maintains CML LSCs in a quiescent state, resulting in disease progression and resistance to therapy.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Camundongos , Animais , Baço , Células-Tronco Neoplásicas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide/genética , Macrófagos/metabolismo , Progressão da Doença , Microambiente Tumoral
13.
Cell Genom ; 2(9): 100171, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36778670

RESUMO

Long noncoding RNAs (lncRNAs) are widely dysregulated in cancer, yet their functional roles in cancer hallmarks remain unclear. We employ pooled CRISPR deletion to perturb 831 lncRNAs detected in KRAS-mutant non-small cell lung cancer (NSCLC) and measure their contribution to proliferation, chemoresistance, and migration across two cell backgrounds. Integrative analysis of these data outperforms conventional "dropout" screens in identifying cancer genes while prioritizing disease-relevant lncRNAs with pleiotropic and background-independent roles. Altogether, 80 high-confidence oncogenic lncRNAs are active in NSCLC, which tend to be amplified and overexpressed in tumors. A follow-up antisense oligonucleotide (ASO) screen shortlisted two candidates, Cancer Hallmarks in Lung LncRNA 1 (CHiLL1) and GCAWKR, whose knockdown consistently suppressed cancer hallmarks in two- and three-dimension tumor models. Molecular phenotyping reveals that CHiLL1 and GCAWKR control cellular-level phenotypes via distinct transcriptional networks. This work reveals a multi-dimensional functional lncRNA landscape underlying NSCLC that contains potential therapeutic vulnerabilities.

14.
Eur J Immunol ; 40(10): 2720-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20836157

RESUMO

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease of hematopoietic stem cells. The disease progresses after several years from an initial chronic phase to a blast phase. Leukemia-specific T cells are regularly detected in CML patients and may be involved in the immunological control of the disease. Here, we analyzed the role of leukemia-specific CD8(+) T cells in CML disease control and the mechanism that maintains CD8(+) T-cell immunosurveillance in a retroviral-induced murine CML model. To study antigen-specific immune responses, the glycoprotein of the lymphocytic choriomeningitis virus was used as model leukemia antigen. Leukemia-specific CTL activity was detectable in vivo in CML mice and depletion of CD8(+) T cells rapidly led to disease progression. CML-specific CTL were characterized by the expression of the IL-7 receptor α-chain. In addition, leukemia cells produced IL-7 that was crucial for the maintenance of leukemia-specific CTL and for disease control. Therefore, CML cells maintain the specific CD8(+) T-cell-mediated immune control by IL-7 secretion. This results in prolonged control of disease and probably contributes to the characteristic chronic phase of the disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-7/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Receptores de Interleucina-7/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Interleucina-7/genética , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia
15.
Blood ; 114(8): 1528-36, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19420358

RESUMO

Chronic myeloid leukemia (CML) is a malignant myeloproliferative disease with a characteristic chronic phase (cp) of several years before progression to blast crisis (bc). The immune system may contribute to disease control in CML. We analyzed leukemia-specific immune responses in cpCML and bcCML in a retroviral-induced murine CML model. In the presence of cpCML and bcCML expressing the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen, leukemia-specific cytotoxic T lymphocytes (CTLs) became exhausted. They maintained only limited cytotoxic activity, and did not produce interferon-gamma or tumor necrosis factor-alpha or expand after restimulation. CML-specific CTLs were characterized by high expression of programmed death 1 (PD-1), whereas CML cells expressed PD-ligand 1 (PD-L1). Blocking the PD-1/PD-L1 interaction by generating bcCML in PD-1-deficient mice or by repetitive administration of alphaPD-L1 antibody prolonged survival. In addition, we found that PD-1 is up-regulated on CD8(+) T cells from CML patients. Taken together, our results suggest that blocking the PD-1/PD-L1 interaction may restore the function of CML-specific CTLs and may represent a novel therapeutic approach for CML.


Assuntos
Antígenos de Superfície/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Linfócitos T/patologia , Adulto , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Biológicos , Receptor de Morte Celular Programada 1 , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
Blood ; 113(19): 4681-9, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19252140

RESUMO

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease arising from a hematopoietic stem cell expressing the BCR/ABL fusion protein. Leukemic and dendritic cells (DCs) develop from the same transformed hematopoietic progenitors. How BCR/ABL interferes with the immunoregulatory function of DCs in vivo is unknown. We analyzed the function of BCR/ABL-expressing DCs in a retroviral-induced murine CML model using the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen. BCR/ABL-expressing DCs were found in bone marrow, thymus, spleen, lymph nodes, and blood of CML mice. They were characterized by a low maturation status and induced only limited expansion of naive and memory cytotoxic T lymphocytes (CTLs). In addition, immunization with in vitro-generated BCR/ABL-expressing DCs induced lower frequencies of specific CTLs than immunization with control DCs. BCR/ABL-expressing DCs preferentially homed to the thymus, whereas only few BCR/ABL-expressing DCs reached the spleen. Our results indicate that BCR/ABL-expressing DCs do not efficiently induce CML-specific T-cell responses resulting from low DC maturation and impaired homing to secondary lymphoid organs. In addition, BCR/ABL-expressing DCs in the thymus may contribute to CML-specific tolerance induction of specific CTLs.


Assuntos
Células Dendríticas/fisiologia , Proteínas de Fusão bcr-abl/metabolismo , Glicoproteínas/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Modelos Animais de Doenças , Citometria de Fluxo , Imunização , Memória Imunológica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Retroviridae/genética , Células Tumorais Cultivadas , Irradiação Corporal Total
17.
J Neurooncol ; 103(2): 343-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20857319

RESUMO

Methylation of the MGMT promoter is supposed to be a predictive and prognostic factor in glioblastoma. Whether MGMT promoter methylation correlates with tumor response to temozolomide in low-grade gliomas is less clear. Therefore, we analyzed MGMT promoter methylation by a quantitative methylation-specific PCR in 22 patients with histologically verified low-grade gliomas (WHO grade II) who were treated with temozolomide (TMZ) for tumor progression. Objective tumor response, toxicity, and LOH of microsatellite markers on chromosomes 1p and 19q were analyzed. Histological classification revealed ten oligodendrogliomas, seven oligoastrocytomas, and five astrocytomas. All patients were treated with TMZ 200 mg/m2 on days 1-5 in a 4 week cycle. The median progression-free survival was 32 months. Combined LOH 1p and 19q was found in 14 patients; one patient had LOH 1p alone and one patient LOH 19q alone. The LOH status could not be determined in two patients and was normal in the remaining four. LOH 1p and/or 19q correlated with longer time to progression but not with radiological response to TMZ. MGMT promoter methylation was detectable in 20 patients by conventional PCR and quantitative analysis revealed the methylation status was between 12 and 100%. The volumetric response to chemotherapy analyzed by MRI and time to progression correlated with the level of MGMT promoter methylation. Therefore, our retrospective case series suggests that quantitative methylation-specific PCR of the MGMT promoter predicts radiological response to chemotherapy with TMZ in WHO grade II gliomas.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Feminino , Glioma/tratamento farmacológico , Humanos , Estimativa de Kaplan-Meier , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temozolomida
18.
Front Oncol ; 11: 663406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017684

RESUMO

BACKGROUND: Immune-checkpoint (IC) inhibitors have revolutionized the treatment of multiple solid tumors and defined lymphomas, but they are largely ineffective in acute myeloid leukemia (AML). The reason why especially PD1/PD-L1 blocking agents are not efficacious is not well-understood but it may be due to the contribution of different IC ligand/receptor interactions that determine the function of T cells in AML. METHODS: To analyze the interactions of IC ligands and receptors in AML, we performed a comprehensive transcriptomic analysis of FACS-purified leukemia stem/progenitor cells and paired bone marrow (BM)-infiltrating CD4+ and CD8+ T cells from 30 patients with AML. The gene expression profiles of activating and inhibiting IC ligands and receptors were correlated with the clinical data. Epigenetic mechanisms were studied by inhibiting the histone deacetylase with valproic acid or by gene silencing of PAC1. RESULTS: We observed that IC ligands and receptors were mainly upregulated in leukemia stem cells. The gene expression of activating IC ligands and receptors correlated with improved prognosis and vice versa. In contrast, the majority of IC receptor genes were downregulated in BM-infiltrating CD8+ T cells and partially in CD4+ T cells, due to pathological chromatin remodeling via histone deacetylation. Therefore, treatment with histone deacetylase inhibitor (HDACi) or silencing of PAC1, as a T cell-specific epigenetic modulator, significantly increased the expression of IC receptors and defined effector molecules in CD8+ T cells. CONCLUSIONS: Our results suggest that CD8+ T cells in AML are dysfunctional mainly due to pathological epigenetic silencing of activating IC receptors rather than due to signaling by immune inhibitory IC receptors, which may explain the limited efficacy of antibodies that block immune-inhibitory ICs in AML.

19.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34727093

RESUMO

Leukemia stem cells (LSCs) promote the disease and seem resistant to therapy and immune control. Why LSCs are selectively resistant against elimination by CD8+ cytotoxic T cells (CTLs) is still unknown. In this study, we demonstrate that LSCs in chronic myeloid leukemia (CML) can be recognized and killed by CD8+ CTLs in vitro. However, Tregs, which preferentially localized close to CD8+ CTLs in CML BM, protected LSCs from MHC class I-dependent CD8+ CTL-mediated elimination in vivo. BM Tregs in CML were characterized by the selective expression of tumor necrosis factor receptor 4 (Tnfrsf4). Stimulation of Tnfrsf4 signaling did not deplete Tregs but reduced the capacity of Tregs to protect LSCs from CD8+ CTL-mediated killing. In the BM of newly diagnosed CML patients, TNFRSF4 mRNA levels were significantly increased and correlated with the expression of the Treg-restricted transcription factor FOXP3. Overall, these results identify Tregs as key regulators of immune escape of LSCs and TNFRSF4 as a potential target to reduce the function of Tregs and boost antileukemic immunity in CML.


Assuntos
Imunoterapia/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Receptores OX40/metabolismo , Linfócitos T Reguladores/imunologia , Evasão Tumoral/imunologia , Animais , Doença Crônica , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos
20.
Cell Rep ; 34(4): 108663, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503440

RESUMO

Self-renewal is a key characteristic of leukemia stem cells (LSCs) responsible for the development and maintenance of leukemia. In this study, we identify CD93 as an important regulator of self-renewal and proliferation of murine and human LSCs, but not hematopoietic stem cells (HSCs). The intracellular domain of CD93 promotes gene transcription via the transcriptional regulator SCY1-like pseudokinase 1 independently of ligation of the extracellular domain. In a drug library screen, we identify the anti-emetic agent metoclopramide as an efficient blocker of CD93 signaling. Metoclopramide treatment reduces murine and human LSCs in vitro and prolongs survival of chronic myeloid leukemia (CML) mice through downregulation of pathways related to stemness and proliferation in LSCs. Overall, these results identify CD93 signaling as an LSC-specific regulator of self-renewal and proliferation and a targetable pathway to eliminate LSCs in CML.


Assuntos
Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Metoclopramida/uso terapêutico , Animais , Antagonistas dos Receptores de Dopamina D2/farmacologia , Humanos , Metoclopramida/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA