Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 52: 92-104, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27965171

RESUMO

INTRODUCTION: Xenogeneic extracellular matrix (ECM) hydrogels have shown promise in remediating cardiac ischemia damage in animal models, yet analogous human ECM hydrogels have not been well development. An original human placenta-derived hydrogel (hpECM) preparation was thus generated for assessment in cardiomyocyte cell culture and therapeutic cardiac injection applications. METHODS AND RESULTS: Hybrid orbitrap-quadrupole mass spectrometry and ELISAs showed hpECM to be rich in collagens, basement membrane proteins, and regenerative growth factors (e.g. VEGF-B, HGF). Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes synchronized and electrically coupled on hpECM faster than on conventional cell culture environments, as validated by intracellular calcium measurements. In vivo, injections using biotin-labeled hpECM confirmed its spatially discrete localization to the myocardium proximal to the injection site. hpECM was injected into rat myocardium following an acute myocardium infarction induced by left anterior descending artery ligation. Compared to sham treated animals, which exhibited aberrant electrical activity and larger myocardial scars, hpECM injected rat hearts showed a significant reduction in scar volume along with normal electrical activity of the surviving tissue, as determined by optical mapping. CONCLUSION: Placental matrix and growth factors can be extracted as a hydrogel that effectively supports cardiomyocytes in vitro, and in vivo reduces scar formation while maintaining electrophysiological activity when injected into ischemic myocardium. STATEMENT OF SIGNIFICANCE: This is the first report of an original extracellular matrix hydrogel preparation isolated from human placentas (hpECM). hpECM is rich in collagens, laminin, fibronectin, glycoproteins, and growth factors, including known pro-regenerative, pro-angiogenic, anti-scarring, anti-inflammatory, and stem cell-recruiting factors. hpECM supports the culture of cardiomyocytes, stem cells and blood vessels assembly from endothelial cells. In a rat model of myocardial infarction, hpECM injections were safely deliverable to the ischemic myocardium. hpECM injections repaired the myocardium, resulting in a significant reduction in infarct size, more viable myocardium, and a normal electrophysiological contraction profile. hpECM thus has potential in therapeutic cardiovascular applications, in cellular therapies (as a delivery vehicle), and is a promising biomaterial for advancing basic cell-based research and regenerative medicine applications.


Assuntos
Matriz Extracelular/química , Regeneração Tecidual Guiada/métodos , Hidrogéis/química , Isquemia Miocárdica/terapia , Miócitos Cardíacos/fisiologia , Placenta/química , Células-Tronco/fisiologia , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/citologia , Gravidez , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia
2.
Stem Cells Int ; 2017: 1513281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250775

RESUMO

While induced pluripotent stem cells (iPSCs) hold great clinical promise, one hurdle that remains is the existence of a parental germ-layer memory in reprogrammed cells leading to preferential differentiation fates. While it is problematic for generating cells vastly different from the reprogrammed cells' origins, it could be advantageous for the reliable generation of germ-layer specific cell types for future therapeutic use. Here we use human osteoblast-derived iPSCs (hOB-iPSCs) to generate induced osteoprogenitors (iOPs). Osteoblasts were successfully reprogrammed and demonstrated by endogenous upregulation of Oct4, Sox2, Nanog, TRA-1-81, TRA-16-1, SSEA3, and confirmatory hPSC Scorecard Algorithmic Assessment. The hOB-iPSCs formed embryoid bodies with cells of ectoderm and mesoderm but have low capacity to form endodermal cells. Differentiation into osteoprogenitors occurred within only 2-6 days, with a population doubling rate of less than 24 hrs; however, hOB-iPSC derived osteoprogenitors were only able to form osteogenic and chondrogenic cells but not adipogenic cells. Consistent with this, hOB-iOPs were found to have higher methylation of PPARγ but similar levels of methylation on the RUNX2 promoter. These data demonstrate that iPSCs can be generated from human osteoblasts, but variant methylation patterns affect their differentiation capacities. Therefore, epigenetic memory can be exploited for efficient generation of clinically relevant quantities of osteoprogenitor cells.

3.
Cells Tissues Organs ; 176(1-3): 54-66, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14745235

RESUMO

The cranial sutures are the primary sites of bone formation during skull growth. Morphogenesis and phenotypic maintenance of the cranial sutures are regulated by tissue interactions, especially those with the underlying dura mater. Removal of the dura mater in fetuses causes abnormal suture development and premature suture obliteration. The dura mater interacts with overlying tissues of the cranial vault by providing: (1) intercellular signals, (2) mechanical signals and (3) cells, which undergo transformation and migrate to the suture. The intercellular signaling governing suture development employs the fibroblast growth factors (FGFs). In rats during formation of the sutures in the fetus, FGF-1 is localized mainly in the dura mater, while other FGFs are expressed in the overlying tissues. By birth, FGF-2 largely replaces FGF-1 in the dura mater. FGFs present in the calvaria bind either the IIIb or IIIc mRNA splice variants of the FGF receptors (FGFRs) 1, 2, or 3. Monoclonal antibodies to the b variant of FGFR2 were used to determine the distribution of FGFR2IIIb during suture development and its extracellular localization. FGFR2IIIb is present in association with mature osteoblasts and osteogenic precursor cells of the suture in the fetus. Ectodomains of FGFR2IIIb, the products of proteolytic cleavage of the receptors, were present throughout the extracellular matrix of sutures resisting obliteration (coronal and sagittal), but absent from the core of sutures undergoing normal fusion (posterior intrafrontal). This observation is consistent with a possible mechanism, in which truncated receptors bind FGFs, thus regulating free FGF available to nearby cells. Mechanical signaling in the calvaria results from tensional forces in the dura mater generated during rapid expansion of the neurocranium. Posterior intrafrontal sutures of rats, which fuse between days 16 and 24, were subjected to cyclical tensional forces in vitro. Significant delay in the timing of suture fusion and increases in the expression domains of FGFR1 and 2 were observed, demonstrating the sensitivity of suture patency to mechanical signals and a possible role of the FGF system in mediating such stimuli. Finally, cells of the dura mater beneath the intrafrontal and sagittal sutures were observed to undergo a morphological transformation to a dendritic morphology and migrate into the suture mesenchyme between days 10 and 16 of development. This process may participate in suture and bone morphogenesis and influence the patency of the sutures along the anterior-posterior axis.


Assuntos
Suturas Cranianas/crescimento & desenvolvimento , Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Matriz Óssea/química , Diferenciação Celular , Movimento Celular , Suturas Cranianas/embriologia , Células Dendríticas/química , Células Dendríticas/citologia , Dura-Máter/química , Fator 1 de Crescimento de Fibroblastos/análise , Fator 10 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos/análise , Fator 3 de Crescimento de Fibroblastos , Fator 7 de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/análise , Imuno-Histoquímica , Morfogênese/fisiologia , Periósteo/química , Ratos , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/análise , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/análise , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA