Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 87(5): 1330-1337, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38687892

RESUMO

Serratiomycin (1) is an antibacterial cyclic depsipeptide, first discovered from a Eubacterium culture in 1998. This compound was initially reported to contain l-Leu, l-Ser, l-allo-Thr, d-Phe, d-Ile, and hydroxydecanoic acid. In the present study, 1 and three new derivatives, serratiomycin D1-D3 (2-4), were isolated from a Serratia sp. strain isolated from the exoskeleton of a long-horned beetle. The planar structures of 1-4 were elucidated by using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Comparison of the NMR chemical shifts and the physicochemical data of 1 to those of previously reported serratiomycin indeed identified 1 as serratiomycin. The absolute configurations of the amino units in compounds 1-4 were determined by the advanced Marfey's method, 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate derivatization, and liquid chromatography-mass spectrometric (LC-MS) analysis. Additionally, methanolysis and the modified Mosher's method were used to determine the absolute configuration of (3R)-hydroxydecanoic acid in 1. Consequently, the revised structure of 1 was found to possess d-Leu, l-Ser, l-Thr, d-Phe, l-allo-Ile, and d-hydroxydecanoic acid. In comparison with the previously published structure of serratiomycin, l-Leu, l-allo-Thr, and d-Ile in serratiomycin were revised to d-Leu, l-Thr, and l-allo-Ile. The new members of the serratiomycin family, compounds 2 and 3, showed considerably higher antibacterial activities against Staphylococcus aureus and Salmonella enterica than compound 1.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Serratia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Serratia/química , Estrutura Molecular , Animais , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Besouros , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos
2.
J Nat Prod ; 87(3): 591-599, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38442389

RESUMO

A new polyol polyketide, named retinestatin (1), was obtained and characterized from the culture of a Streptomyces strain, which was isolated from a subterranean nest of the termite Reticulitermes speratus kyushuensis Morimoto. The planar structure of 1 was elucidated on the basis of the cumulative analysis of ultraviolet, infrared, mass spectrometry, and nuclear magnetic resonance spectroscopic data. The absolute configuration of 1 at 12 chiral centers was successfully assigned by employing a J-based configuration analysis in combination with ROESY correlations, a quantum mechanics-based computational approach to calculate NMR chemical shifts, and a 3 min flash esterification by Mosher's reagents followed by NMR analysis. Biological evaluation of retinestatin (1) using an in vitro model of Parkinson's disease revealed that 1 protected SH-SY5Y dopaminergic cells from MPP+-induced cytotoxicity, indicating its neuroprotective effects.


Assuntos
Isópteros , Neuroblastoma , Policetídeos , Polímeros , Streptomyces , Animais , Humanos , Policetídeos/química , Estrutura Molecular , Streptomyces/química
3.
Mar Drugs ; 22(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393059

RESUMO

Anithiactin D (1), a 2-phenylthiazole class of natural products, was isolated from marine mudflat-derived actinomycetes Streptomyces sp. 10A085. The chemical structure of 1 was elucidated based on the interpretation of NMR and MS data. The absolute configuration of 1 was determined by comparing the experimental and calculated electronic circular dichroism (ECD) spectral data. Anithiactin D (1) significantly decreased cancer cell migration and invasion activities at a concentration of 5 µM via downregulation of the epithelial-to-mesenchymal transition (EMT) markers in A549, AGS, and Caco-2 cell lines. Moreover, 1 inhibited the activity of Rho GTPases, including Rac1 and RhoA in the A549 cell line, suppressed RhoA in AGS and Caco-2 cell lines, and decreased the mRNA expression levels of some matrix metalloproteinases (MMPs) in AGS and Caco-2 cell lines. Thus 1, which is a new entity of the 2-phenylthiazole class of natural products with a unique aniline-indole fused moiety, is a potent inhibitor of the motility of cancer cells.


Assuntos
Neoplasias , Streptomyces , Humanos , Linhagem Celular Tumoral , Células CACO-2 , Streptomyces/metabolismo , Células A549 , Proteínas rho de Ligação ao GTP/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal
4.
Angew Chem Int Ed Engl ; 63(21): e202402465, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38482567

RESUMO

A targeted metabologenomic method was developed to selectively discover terminal oxazole-bearing natural products from bacteria. For this, genes encoding oxazole cyclase, a key enzyme in terminal oxazole biosynthesis, were chosen as the genomic signature to screen bacterial strains that may produce oxazole-bearing compounds. Sixteen strains were identified from the screening of a bacterial DNA library (1,000 strains) using oxazole cyclase gene-targeting polymerase chain reaction (PCR) primers. The PCR amplicon sequences were subjected to phylogenetic analysis and classified into nine clades. 1H-13C coupled-HSQC NMR spectra obtained from the culture extracts of the hit strains enabled the unequivocal detection of the target compounds, including five new oxazole compounds, based on the unique 1JCH values and chemical shifts of oxazole: lenzioxazole (1) possessing an unprecedented cyclopentane, permafroxazole (2) bearing a tetraene conjugated with carboxylic acid, tenebriazine (3) incorporating two modified amino acids, and methyl-oxazolomycins A and B (4 and 5). Tenebriazine displayed inhibitory activity against pathogenic fungi, whereas methyl-oxazolomycins A and B (4 and 5) selectively showed anti-proliferative activity against estrogen receptor-positive breast cancer cells. This metabologenomic method enables the logical and efficient discovery of new microbial natural products with a target structural motif without the need for isotopic labeling.


Assuntos
Produtos Biológicos , Oxazóis , Oxazóis/química , Oxazóis/farmacologia , Oxazóis/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Metabolômica , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Bactérias/efeitos dos fármacos
5.
J Am Chem Soc ; 145(40): 22047-22057, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756205

RESUMO

Cytochrome P450 enzymes (P450s) catalyze diverse oxidative cross-coupling reactions between aromatic substrates in the natural product biosynthesis. Specifically, P450s install distinct biaryl macrocyclic linkages in three families of ribosomally synthesized and post-translationally modified peptides (RiPPs). However, the chemical diversity of biaryl-containing macrocyclic RiPPs remains largely unexplored. Here, we demonstrate that P450s have the capability to generate diverse biaryl linkages on RiPPs, collectively named "cyptides". Homology-based genome mining for P450 macrocyclases revealed 19 novel groups of homologous biosynthetic gene clusters (BGCs) with distinct aromatic residue patterns in the precursor peptides. Using the P450-modified precursor peptides heterologously coexpressed with corresponding P450s in Escherichia coli, we determined the NMR structures of three novel biaryl-containing peptides─the enzymatic products, roseovertin (1), rubrin (2), and lapparbin (3)─and confirmed the formation of three unprecedented or rare biaryl linkages: Trp C-7'-to-His N-τ in 1, Trp C-7'-to-Tyr C-6 in 2, and Tyr C-6-to-Trp N-1' in 3. Biochemical characterization indicated that certain P450s in these pathways have a relaxed substrate specificity. Overall, our studies suggest that P450 macrocyclases have evolved to create diverse biaryl linkages in RiPPs, promoting the exploration of a broader chemical space for biaryl-containing peptides encoded in bacterial genomes.

6.
J Am Chem Soc ; 145(36): 19676-19690, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642383

RESUMO

A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.


Assuntos
Produtos Biológicos , Genômica , Humanos , Animais , Camundongos , Filogenia , Análise Espectral , Produtos Biológicos/farmacologia
7.
J Am Chem Soc ; 145(3): 1886-1896, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36634356

RESUMO

The logical and effective discovery of macrolactams, structurally unique natural molecules with diverse biological activities, has been limited by a lack of targeted search methods. Herein, a targeted discovery method for natural macrolactams was devised by coupling genomic signature-based PCR screening of a bacterial DNA library with spectroscopic signature-based early identification of macrolactams. DNA library screening facilitated the efficient selection of 43 potential macrolactam-producing strains (3.6% of 1,188 strains screened). The PCR amplicons of the amine-deprotecting enzyme-coding genes were analyzed to predict the macrolactam type (α-methyl, α-alkyl, or ß-methyl) produced by the hit strains. 1H-15N HSQC-TOCSY NMR analysis of 15N-labeled culture extracts enabled macrolactam detection and structural type assignment without any purification steps. This method identified a high-titer Micromonospora strain producing salinilactam (1), a previously reported α-methyl macrolactam, and two Streptomyces strains producing new α-alkyl and ß-methyl macrolactams. Subsequent purification and spectroscopic analysis led to the structural revision of 1 and the discovery of muanlactam (2), an α-alkyl macrolactam with diene amide and tetraene chromophores, and concolactam (3), a ß-methyl macrolactam with a [16,6,6]-tricyclic skeleton. Detailed genomic analysis of the strains producing 1-3 identified putative biosynthetic gene clusters and pathways. Compound 2 displayed significant cytotoxicity against various cancer cell lines (IC50 = 1.58 µM against HCT116), whereas 3 showed inhibitory activity against Staphylococcus aureus sortase A. This genomic and spectroscopic signature-based method provides an efficient search strategy for new natural macrolactams and will be generally applicable for the discovery of nitrogen-bearing natural products.


Assuntos
Streptomyces , Estrutura Molecular , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/química , Streptomyces/metabolismo , Genômica , Reação em Cadeia da Polimerase , Família Multigênica
8.
J Org Chem ; 88(13): 8099-8113, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285286

RESUMO

Herein, we present the iron-catalyzed oxidative cyclization of alcohol/methyl arene with 2-amino styrene to synthesize polysubstituted quinoline. Low-oxidation level substrates such as alcohols and methyl arenes are converted to aldehydes in the presence of an iron catalyst and di-t-butyl peroxide. Then, the quinoline scaffold is synthesized through imine condensation/radical cyclization/oxidative aromatization. Our protocol showed a broad substrate scope, and various functionalization and fluorescence applications of quinoline products demonstrated its synthetic ability.


Assuntos
Quinolinas , Estirenos , Ciclização , Álcoois , Ferro , Catálise , Estresse Oxidativo
9.
J Nat Prod ; 86(3): 612-620, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36921317

RESUMO

New sulfur-bearing natural products, sadopeptins A and B (1 and 2), were discovered from Streptomyces sp. YNK18 based on a targeted search using the characteristic isotopic signature of sulfur in mass spectrometry analysis. Compounds 1 and 2 were determined to be new cyclic heptapeptides, bearing methionine sulfoxide [Met(O)] and 3-amino-6-hydroxy-2-piperidone (Ahp), based on 1D and 2D NMR spectroscopy along with IR, UV, and MS. The configurations of sadopeptins A and B (1 and 2) were established via the analysis of the ROESY NMR correlation, oxidation, Marfey's method, and circular dichroism (CD) spectroscopy. The bioinformatics analysis of the full Streptomyces sp. YNK18 genome identified a nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster (BGC), and a putative biosynthetic pathway is proposed. Sadopeptins A and B displayed proteasome-inhibitory activity without affecting cellular autophagic flux.


Assuntos
Piperidonas , Streptomyces , Complexo de Endopeptidases do Proteassoma , Streptomyces/química , Espectroscopia de Ressonância Magnética , Piperidonas/farmacologia , Sulfóxidos/metabolismo
10.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38093455

RESUMO

Two new macrocyclic secondary metabolites, glycosyl-migrastatin (1) and 5-hydroxy-migrastatin (2), were isolated from a gut bacterium Kitasatospora sp. JL24 in dung beetle Onthophagus lenzii. Based on a comprehensive analysis of the nuclear magnetic resonance (NMR), MS, and UV spectroscopic data, the planar structures of 1 and 2 were successfully identified as new derivatives of migrastatin. Compound 1 was the first glycosylated member of the migrastatin family. The absolute configuration of the sugar moiety was determined to be d-glucose through the analysis of coupling constants and ROESY correlations, followed by chemical derivatization and chromatographic comparison with authentic d- and l-glucose. Compound 2, identified as 5-hydroxy-migrastatin possessing an additional hydroxy group with a previously unreported chiral center, was assigned using Mosher's method through 19F NMR chemical shifts and confirmed with the modified Mosher's method. Genomic analysis of Kitasatospora sp. strain JL24 revealed a putative biosynthetic pathway involving an acyltransferase-less type I polyketide synthase biosynthetic gene cluster. ONE-SENTENCE SUMMARY: Two secondary metabolites, glycosyl-migrastatin (1) and 5-hydroxy-migrastatin (2), were discovered from the gut bacterium Kitasatospora sp. JL24 in the dung beetle Onthophagus lenzii.


Assuntos
Macrolídeos , Piperidonas , Espectroscopia de Ressonância Magnética , Bactérias , Estrutura Molecular
11.
Mar Drugs ; 21(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504936

RESUMO

Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B-E (1-4), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 1-4 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D nuclear magnetic resonance, high-resolution mass spectrometry, and circular dichroism (CD) spectra. Jejucarbosides B and E bear a carbonate functional group whereas jejucarbosides C and D are variants possessing 1,2-diol by losing the carbonate functionality. It is proposed that the production of 1-4 occurs via Bergman cycloaromatization capturing Cl- and H+ in the alternative positions of a p-benzyne intermediate derived from a 9-membered enediyne core. Jejucarboside E (4) displayed significant cytotoxicity against human cancer cell lines including SNU-638, SK-HEP-1, A549, HCT116, and MDA-MB-231, with IC50 values of 0.31, 0.40, 0.25, 0.29, and 0.48 µM, respectively, while jejucarbosides B-D (1-3) showed moderate or no cytotoxic effects.


Assuntos
Antineoplásicos , Streptomyces , Humanos , Enedi-Inos/química , Streptomyces/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Glicosídeos/química , Linhagem Celular , Estrutura Molecular
12.
Mar Drugs ; 21(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36827108

RESUMO

Two new glycosylated and succinylated macrocyclic lactones, succinyl glyco-oxydifficidin (1) and succinyl macrolactin O (2), were isolated from a Bacillus strain collected from an intertidal mudflat on Anmyeon Island in Korea. The planar structures of 1 and 2 were proposed using mass spectrometric analysis and NMR spectroscopic data. The absolute configurations of 1 and 2 were determined by optical rotation, J-based configuration analysis, chemical derivatizations, including the modified Mosher's method, and quantum-mechanics-based calculation. Biological evaluation of 1 and 2 revealed that succinyl glyco-oxydifficidin (1) inhibited/dissociated amyloid ß (Aß) aggregation, whereas succinyl macrolactin O (2) inhibited Aß aggregation, indicating their therapeutic potential for disassembling and removing Aß aggregation.


Assuntos
Bacillus , Bacillus/química , Estrutura Molecular , Peptídeos beta-Amiloides , Lactonas/farmacologia
13.
Mar Drugs ; 21(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37755102

RESUMO

A HPLC-UV guided fractionation of the culture broth of Streptomyces sp. CNQ-617 has led to the isolation of a new quinazolinone derivative, actinoquinazolinone (1), as well as two known compounds, 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2) and 7-methoxy-8-hydroxy cycloanthranilylproline (3). The interpretation of 1D, 2D NMR, and MS spectroscopic data revealed the planar structure of 1. Furthermore, compound 1 suppressed invasion ability by inhibiting epithelial-mesenchymal transition markers (EMT) in AGS cells at a concentration of 5 µM. In addition, compound 1 decreased the expression of seventeen genes related to human cell motility and slightly suppressed the signal transducer and activator of the transcription 3 (STAT3) signal pathway in AGS cells. Together, these results demonstrate that 1 is a potent inhibitor of gastric cancer cells.

14.
Mar Drugs ; 21(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37755113

RESUMO

Two new proton-deficient metabolites, tandocyclinones A and B (1 and 2), were discovered via the chemical profiling of the Streptomyces sp. strain TDH03, which was isolated from a marine sediment sample collected from the intertidal mudflat in Tando Port, the Republic of Korea. The structures of 1 and 2 were elucidated as new ether-bridged C-glycosyl benz[a]anthracenes by using a combination of spectroscopic analyses of ultraviolet (UV) and mass spectrometry (MS) data, along with nuclear magnetic resonance (NMR) spectra, which were acquired in tetrahydrofuran (THF)-d8 selected after an extensive search for a solvent, resulting in mostly observable exchangeable protons in the 1H NMR spectrum. Their configurations were successfully assigned by applying a J-based configuration analysis, rotating-frame Overhauser enhancement spectroscopy (ROESY) NMR correlations, chemical derivatization methods based on NMR (a modified version of Mosher's method) and circular dichroism (CD) (Snatzke's method using Mo2(OAc)4-induced CD), as well as quantum-mechanics-based computational methods, to calculate the electronic circular dichroism (ECD). Tandocyclinones A and B (1 and 2) were found to have weak antifungal activity against Trichophyton mentagrophytes IFM40996 with an MIC value of 128 µg/mL (244 and 265 µM for 1 and 2, respectively). A further biological evaluation revealed that tandocyclinone A (1) displayed inhibitory activity against Mycobacterium avium (MIC50 = 40.8 µM) and antiproliferative activity against SNU638 and HCT116 cancer cells, with IC50 values of 31.9 µM and 49.4 µM, respectively.

15.
Mar Drugs ; 21(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976200

RESUMO

Marinobazzanan (1), a new bazzanane-type sesquiterpenoid, was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was elucidated using NMR and mass spectroscopic data, while the relative configurations were established through the analysis of NOESY data. The absolute configurations of 1 were determined by the modified Mosher's method as well as vibrational circular dichroism (VCD) spectra calculation and it was determined as 6R, 7R, 9R, and 10R. It was found that compound 1 was not cytotoxic to human cancer cells, including A549 (lung cancer), AGS (gastric cancer), and Caco-2 (colorectal cancer) below the concentration of 25 µM. However, compound 1 was shown to significantly decrease cancer-cell migration and invasion and soft-agar colony-formation ability at concentrations ranging from 1 to 5 µM by downregulating the expression level of KITENIN and upregulating the expression level of KAI1. Compound 1 suppressed ß-catenin-mediated TOPFLASH activity and its downstream targets in AGS, A549, and Caco-2 and slightly suppressed the Notch signal pathway in three cancer cells. Furthermore, 1 also reduced the number of metastatic nodules in an intraperitoneal xenograft mouse model.


Assuntos
Antineoplásicos , Sesquiterpenos , Humanos , Animais , Camundongos , Células CACO-2 , Transformação Celular Neoplásica , Antineoplásicos/química , Movimento Celular , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
16.
Angew Chem Int Ed Engl ; 62(26): e202300998, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37114290

RESUMO

Cihunamides A-D (1-4), novel antibacterial RiPPs, were isolated from volcanic-island-derived Streptomyces sp. The structures of 1-4 were elucidated by 1 H, 13 C, and 15 N NMR, MS, and chemical derivatization; they contain a tetrapeptide core composed of WNIW, cyclized by a unique C-N linkage between two Trp units. Genome mining of the producer strain revealed two biosynthetic genes encoding a cytochrome P450 enzyme and a precursor peptide. Heterologous co-expression of the core genes demonstrated the biosynthesis of cihunamides through P450-mediated oxidative Trp-Trp cross-linking. Further bioinformatic analysis uncovered 252 homologous gene clusters, including that of tryptorubins, which possess a distinct Trp-Trp linkage. Cihunamides do not display the non-canonical atropisomerism shown in tryptorubins, which are the founding members of the "atropitide" family. Therefore, we propose to use a new RiPP family name, "bitryptides", for cihunamides, tryptorubins, and their congeners, wherein the Trp-Trp linkages define the structural class rather than non-canonical atropisomerism.


Assuntos
Produtos Biológicos , Peptídeos , Peptídeos/química , Biologia Computacional , Processamento de Proteína Pós-Traducional , Genoma , Sistema Enzimático do Citocromo P-450/genética
17.
J Org Chem ; 87(24): 16378-16389, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36417466

RESUMO

α-Alkyl and α-olefin nitriles are very important for organic synthesis and medicinal chemistry. However, different types of catalysts are employed to achieve either α-alkylation of nitriles by borrowing hydrogen or α-olefination by dehydrogenative coupling methods. Designing and developing high-performance earth-abundant catalysts that can procure different products from the same starting materials remain a great challenge. Herein, we report an iron(0) catalyst system that achieves chemoselectivity between borrowing hydrogen and dehydrogenative coupling protocols by simply changing the base. A broad range of nitriles and alcohols, including benzylic, linear aliphatic, cycloaliphatic, heterocyclic, and allylic alcohols, were selectively and efficiently converted to the corresponding products. Mechanistic studies reveal that the reaction mechanism proceeds through a dehydrogenative pathway. This iron catalytic protocol is environmentally benign and atom-efficient with the liberation of H2 and H2O as green byproducts.


Assuntos
Álcoois , Hidrogênio , Ferro , Alquilação , Catálise , Nitrilas
18.
J Nat Prod ; 85(4): 936-942, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35362983

RESUMO

A new bicyclic macrolide, hamuramicin C (1), was isolated from Streptomyces sp. MBP16, a gut bacterial strain of the wasp Vespa crabro flavofasciata. Its 22-membered macrocyclic lactone structure was determined by NMR and mass spectrometry. The relative configurations of hamuramicin C (1) were assigned by J-based configuration analysis utilizing 1H rotating frame Overhauser effect spectroscopy and heteronuclear long-range coupling NMR spectroscopy. Genomic and bioinformatic analyses of the bacterial strain enabled identification of the type-I polyketide synthase pathway, which employs a trans-acyltransferase system. The absolute configurations of 1 were proposed based on the analysis of the sequences of ketoreductases in the modular gene cluster. Moreover, hamuramicin C (1) demonstrated significant inhibitory activity against diverse human cancer cell lines (HCT116, A549, SNU-638, SK-HEP-1, and MDA-MB-231).


Assuntos
Antineoplásicos , Streptomyces , Vespas , Animais , Antibacterianos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Humanos , Macrolídeos/química , Estrutura Molecular , Policetídeo Sintases/metabolismo , Streptomyces/química
19.
J Nat Prod ; 85(12): 2817-2827, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36458922

RESUMO

Piceamycin (1), a macrocyclic lactam isolated from the silkworm's gut (Streptomyces sp. SD53 strain), reportedly possesses antibacterial activity. However, the potential anticancer activity and molecular processes underlying 1 have yet to be reported. Colorectal cancer (CRC) is high-risk cancer and accounts for 10% of all cancer cases worldwide. The high prevalence of resistance to radiation or chemotherapy means that patients with advanced CRC have a poor prognosis, with high recurrence and metastasis potential. Therefore, the present study investigated the antitumor effect and underlying mechanisms of 1 in CRC cells. The growth-inhibiting effect of 1 in CRC cells was correlated with the upregulation of a tumor suppressor, N-myc downstream-regulated gene 1 (NDRG1). Additionally, 1 induced G0/G1 cell cycle arrest and apoptosis and inhibited the migration of CRC cells. Notably, 1 disrupted the interaction between NDRG1 and c-Myc in CRC cells. In a mouse model with HCT116-implanted xenografts, the antitumor activity of 1 was confirmed by NDRG1 modulation. Overall, these findings show that 1 is a potential candidate for CRC treatment through regulation of NDGR1-mediated functionality.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Animais , Camundongos , Humanos , Lactamas Macrocíclicas , Regulação para Cima , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
20.
J Nat Prod ; 85(4): 804-814, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35294831

RESUMO

A new nonribosomal peptide, nyuzenamide C (1), was discovered from riverine sediment-derived Streptomyces sp. DM14. Comprehensive analysis of the spectroscopic data of nyuzenamide C (1) revealed that 1 has a bicyclic backbone composed of six common amino acid residues (Asn, Leu, Pro, Gly, Val, and Thr) and four nonproteinogenic amino acid units, including hydroxyglycine, ß-hydroxyphenylalanine, p-hydroxyphenylglycine, and 3,ß-dihydroxytyrosine, along with 1,2-epoxypropyl cinnamic acid. The absolute configuration of 1 was proposed by J-based configuration analysis, the advanced Marfey's method, quantum mechanics-based DP4 calculations, and bioinformatic analysis of its nonribosomal peptide synthetase biosynthetic gene cluster. Nyuzenamide C (1) displayed antiangiogenic activity in human umbilical vein endothelial cells and induced quinone reductase in murine Hepa-1c1c7 cells.


Assuntos
Streptomyces , Aminoácidos/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Cinamatos , Células Endoteliais/metabolismo , Humanos , Camundongos , Fragmentos de Peptídeos , Peptídeos/química , Streptomyces/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA