Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(40): e2308588120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748057

RESUMO

A recently discovered group of kagome metals AV[Formula: see text]Sb[Formula: see text] (A = K, Rb, Cs) exhibit a variety of intertwined unconventional electronic phases, which emerge from a puzzling charge density wave phase. Understanding of this charge-ordered parent phase is crucial for deciphering the entire phase diagram. However, the mechanism of the charge density wave is still controversial, and its primary source of fluctuations-the collective modes-has not been experimentally observed. Here, we use ultrashort laser pulses to melt the charge order in CsV[Formula: see text]Sb[Formula: see text] and record the resulting dynamics using femtosecond angle-resolved photoemission. We resolve the melting time of the charge order and directly observe its amplitude mode, imposing a fundamental limit for the fastest possible lattice rearrangement time. These observations together with ab initio calculations provide clear evidence for a structural rather than electronic mechanism of the charge density wave. Our findings pave the way for a better understanding of the unconventional phases hosted on the kagome lattice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA