Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 726: 150289, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917633

RESUMO

Among the various RNA modifications, adenosine-to-inosine RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) family, ADAR1 and ADAR2, is the most common nucleotide conversion in mammalian cells. The pathological relevance of ADAR expression has been highlighted in recent human genetic studies. Low expression of the ADAR2 gene is correlated with a poor prognosis in breast cancer patients, but the underlying mechanism remains enigmatic. In this study, we constructed Adar2-knockdown (Adar2-KD) murine breast cancer 4T1 cells and observed their reduced susceptibility to chemotherapeutic drug doxorubicin. Downregulation of ADAR2 induced the expression of P-glycoprotein (P-gp), leading to a reduction in the intracellular accumulation of doxorubicin. The upregulation of P-gp occurred at the post-transcriptional level due to the decreased miR-195a-3p function. The search for the underlying cause of the induction of P-gp expression in Adar2-KD 4T1 cells led to the identification of circular RNA (circRNA) circHif1a as a sponge for miR-195a-3p. The enhanced expression of circHif1a inhibited miR-195a-3p function, resulting in the upregulation of P-gp expression. These results suggest that ADAR2 acts as a suppressor of circHif1a biogenesis and then allows miR-195a-3p to interfere with P-gp translation. Our findings may help to improve drug efficacy by clarifying the mechanism of chemoresistance in breast cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Adenosina Desaminase , Doxorrubicina , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Edição de RNA , RNA Circular , Animais , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , RNA Circular/genética , RNA Circular/metabolismo , Doxorrubicina/farmacologia , Linhagem Celular Tumoral , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Antibióticos Antineoplásicos/farmacologia
2.
Biochem Biophys Res Commun ; 708: 149813, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38522403

RESUMO

The chemotherapeutic agent tegafur, a prodrug that prolongs the half-life of fluorouracil (5-FU), exerts antitumor effects against various cancers. Since tegafur is metabolized to 5-FU by CYP2A6 in the liver, the expression of CYP2A6 determines the effect of tegafur. Here, we report that the expression rhythm of Cyp2a5, a homolog of human CYP2A6, in female mice causes dosing time-dependent differences in tegafur metabolism. In the livers of female mice, CYP2A5 expression showed a circadian rhythm, peaking during the dark period. This rhythm is regulated by RORA, a core clock component, and abrogation of the CYP2A5 activity abolished the time-dependent difference in the rate of tegafur metabolism in female mice. Furthermore, administration of tegafur to mice transplanted with 4T1 breast cancer cells during the dark period suppressed increases in tumor size compared to female mice treated during the light period. Our findings reveal a novel relationship between 5-FU prodrugs and circadian clock machinery, potentially influencing antitumor effects, and contributing to the development of time-aware chemotherapy regimens for breast cancer.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Neoplasias da Mama , Feminino , Humanos , Animais , Camundongos , Tegafur/metabolismo , Neoplasias da Mama/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/metabolismo , Ritmo Circadiano
3.
Biochem Biophys Res Commun ; 720: 150077, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38759303

RESUMO

Hericenone C is one of the most abundant secondary metabolites derived from Hericium erinaceus, under investigation for medicinal properties. Here, we report that Hericenone C inhibits the second phase of formalin-induced nociceptive behavior in mice. As the second phase is involved in inflammation, in a mechanistic analysis on cultured cells targeting NF-κB response element (NRE): luciferase (Luc)-expressing cells, lipopolysaccharide (LPS)-induced NRE::Luc luciferase activity was found to be significantly inhibited by Hericenone C. Phosphorylation of p65, which is involved in the inflammatory responses of the NF-κB signaling pathway, was also induced by LPS and significantly reduced by Hericenone C. Additionally, in mice, the number of CD11c-positive cells increased in the paw during the peak of the second phase of the formalin test, which decreased upon Hericenone C intake. Our findings confirm the possibility of Hericenone C as a novel therapeutic target for pain-associated inflammation.


Assuntos
Epiderme , Formaldeído , Animais , Fosforilação/efeitos dos fármacos , Camundongos , Masculino , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Antígenos CD11/metabolismo , Nociceptividade/efeitos dos fármacos , Humanos
4.
J Pharmacol Exp Ther ; 390(2): 177-185, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38458768

RESUMO

A problem for patients with diabetes is the rise of complications, such as peripheral neuropathy, nephropathy, and retinopathy. Among them, peripheral neuropathy, characterized by numbness and/or hypersensitivity to pain in the extremities, is likely to develop in the early stages of diabetes. Empagliflozin (EMPA), a sodium-glucose cotransporter-2 inhibitor, exerts hypoglycemic effects by preventing glucose reabsorption in proximal tubular cells. EMPA can improve cardiovascular and renal outcomes in diabetic patients, but its suppressive effect on the development of diabetic neuropathy remains unclear. In this study, we demonstrated that optimizing the dosing schedule of EMPA suppressed the development of pain hypersensitivity in streptozotocin (STZ)-induced diabetic model mice maintained under standardized light/dark cycle conditions. A single intraperitoneal administration of STZ to mice induced hyperglycemia accompanied by pain hypersensitivity. Although EMPA did not exert anti-hypersensitivity effect on STZ-induced diabetic mice after the establishment of neuropathic pain, the development of pain hypersensitivity in the diabetic mice was significantly suppressed by daily oral administration of EMPA at the beginning of the dark phase. On the other hand, the suppressive effect was not observed when EMPA was administered at the beginning of the light phase. The hypoglycemic effect of EMPA and its stimulatory effect on urinary glucose excretion were also enhanced by the administration of the drug at the beginning of the dark phase. Nocturnal mice consumed their food mainly during the dark phase. Our results support the notion that morning administration of EMPA may be effective in suppressing the development of peripheral neuropathy in diabetic patients. SIGNIFICANCE STATEMENT: Empagliflozin, a sodium-glucose cotransporter-2 inhibitor suppressed the development of neuropathic pain hypersensitivity in streptozotocin-induced diabetic model mice in a dosing time-dependent manner.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Experimental , Glucosídeos , Hiperalgesia , Animais , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Glucosídeos/administração & dosagem , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Camundongos , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Relação Dose-Resposta a Droga , Fatores de Tempo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia
5.
J Pharmacol Exp Ther ; 388(1): 218-227, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38050132

RESUMO

Although vancomycin (VCM)-frequently used to treat drug-resistant bacterial infections-often induces acute kidney injury (AKI), discontinuation of the drug is the only effective treatment; therefore, analysis of effective avoidance methods is urgently needed. Here, we report the differences in the induction of AKI by VCM in 1/2-nephrectomized mice depending on the time of administration. Despite the lack of difference in the accumulation of VCM in the kidney between the light (ZT2) and dark (ZT14) phases, the expression of AKI markers due to VCM was observed only in the ZT2 treatment. Genomic analysis of the kidney suggested that the time of administration was involved in VCM-induced changes in monocyte and macrophage activity, and VCM had time-dependent effects on renal macrophage abundance, ATP activity, and interleukin (IL)-1ß expression. Furthermore, the depletion of macrophages with clodronate abolished the induction of IL-1ß and AKI marker expression by VCM administration at ZT2. This study provides evidence of the need for time-dependent pharmacodynamic considerations in the prevention of VCM-induced AKI as well as the potential for macrophage-targeted AKI therapy. SIGNIFICANCE STATEMENT: There is a time of administration at which vancomycin (VCM)-induced renal injury is more and less likely to occur, and macrophages are involved in this difference. Therefore, there is a need for time-dependent pharmacodynamic considerations in the prevention of VCM-induced acute kidney injury as well as the potential for macrophage-targeted acute kidney injury therapy.


Assuntos
Injúria Renal Aguda , Vancomicina , Camundongos , Animais , Vancomicina/farmacologia , Vancomicina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Rim , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Macrófagos
6.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339119

RESUMO

Prostaglandins are bioactive compounds, and the activation of their receptors affects the expression of clock genes. However, the prostaglandin F receptor (Ptgfr) has no known relationship with biological rhythms. Here, we first measured the locomotor period lengths of Ptgfr-KO (B6.129-Ptgfrtm1Sna) mice and found that they were longer under constant dark conditions (DD) than those of wild-type (C57BL/6J) mice. We then investigated the clock gene patterns within the suprachiasmatic nucleus in Ptgfr-KO mice under DD and observed a decrease in the expression of the clock gene cryptochrome 1 (Cry1), which is related to the circadian cycle. Moreover, the expression of Cry1, Cry2, and Period2 (Per2) mRNA were significantly altered in the mouse liver in Ptgfr-KO mice under DD. In the wild-type mouse, the plasma prostaglandin F2α (PGF2α) levels showed a circadian rhythm under a 12 h cycle of light-dark conditions. In addition, in vitro experiments showed that the addition of PTGFR agonists altered the amplitude of Per2::luc activity, and this alteration differed with the timing of the agonist addition. These results lead us to hypothesize that the plasma rhythm of PGF2α is important for driving clock genes, thus suggesting the involvement of PGF2α- and Ptgfr-targeting drugs in the biological clock cycle.


Assuntos
Ritmo Circadiano , Dinoprosta , Camundongos , Animais , Dinoprosta/metabolismo , Camundongos Endogâmicos C57BL , Ritmo Circadiano/genética , Relógios Biológicos , Núcleo Supraquiasmático/metabolismo , Expressão Gênica , Criptocromos/genética , Criptocromos/metabolismo
7.
Mol Pharmacol ; 104(2): 73-79, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316349

RESUMO

Neuropathic pain associated with cancers is caused by tumor growth compressing and damaging nerves, which would also be enhanced by inflammatory factors through sensitizing nociceptor neurons. A troublesome hallmark symptom of neuropathic pain is hypersensitivity to innocuous stimuli, a condition known as "tactile allodynia", which is often refractory to NSAIDs and opioids. The involvement of chemokine CCL2 (monocyte chemoattractant protein-1) in cancer-evoked neuropathic pain is well established, but opinions remain divided as to whether CCL2 is involved in the production of tactile allodynia with tumor growth. In this study, we constructed Ccl2 knockout NCTC 2472 (Ccl2-KO NCTC) fibrosarcoma cells and conducted pain behavioral test using Ccl2-KO NCTC-implanted mice. Implantation of naïve NCTC cells around the sciatic nerves of mice produced tactile allodynia in the inoculated paw. Although the growth of Ccl2 KO NCTC-formed tumors was comparable to that of naïve NCTC-formed tumors, Ccl2-KO NCTC-bearing mice failed to show tactile pain hypersensitivity, suggesting the involvement of CCL2 in cancer-induced allodynia. Subcutaneous administration of controlled-release nanoparticles containing the CCL2 expression inhibitor NS-3-008 (1-benzyl-3-hexylguanidine) significantly attenuated tactile allodynia in naïve NCTC-bearing mice accompanied by a reduction of CCL2 content in tumor masses. Our present findings suggest that inhibition of CCL2 expression in cancer cells is a useful strategy to attenuate tactile allodynia induced by tumor growth. Development of a controlled-release system of CCL2 expression inhibitor may be a preventative option for the treatment of cancer-evoked neuropathic pain. SIGNIFICANCE STATEMENT: The blockade of chemokine/receptor signaling, particularly for C-C motif chemokine ligand 2 (CCL2) and its high-affinity receptor C-C chemokine receptor type 2 (CCR2), has been implicated to attenuate cancer-induced inflammatory and nociceptive pain. This study demonstrated that continuous inhibition of CCL2 production from cancer cells also prevents the development of tactile allodynia associated with tumor growth. Development of a controlled-release system of CCL2 expression inhibitor may be a preventative option for management of cancer-evoked tactile allodynia.


Assuntos
Fibrossarcoma , Neuralgia , Animais , Camundongos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/uso terapêutico , Preparações de Ação Retardada , Fibrossarcoma/complicações , Fibrossarcoma/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Ligantes , Neuralgia/tratamento farmacológico
8.
J Biol Chem ; 298(8): 102184, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753353

RESUMO

Multidrug resistance-associated protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is highly expressed in the kidneys of mammals and is responsible for renal elimination of numerous drugs. Adenosine deaminase acting on RNA 1 (ADAR1) has been reported to regulate gene expression by catalyzing adenosine-to-inosine RNA editing reactions; however, potential roles of ADAR1 in the regulation of MRP4 expression have not been investigated. In this study, we found that downregulation of ADAR1 increased the expression of MRP4 in human renal cells at the posttranscriptional level. Luciferase reporter assays and microarray analysis revealed that downregulation of ADAR1 reduced the levels of microRNA miR-381-3p, which led to the corresponding upregulation of MPR4 expression. Circular RNAs (circRNAs) are a type of closed-loop endogenous noncoding RNAs that play an essential role in gene expression by acting as miRNA sponges. We demonstrate that ADAR1 repressed the biogenesis of circRNA circHIPK3 through its adenosine-to-inosine RNA editing activity, which altered the secondary structure of the precursor of circHIPK3. Furthermore, in silico analysis suggested that circHIPK3 acts as a sponge of miR-381-3p. Indeed, we found overexpression of circHIPK3 induced the expression of MRP4 through its interference with miR-381-3p. Taken together, our study provides novel insights into regulation of the expression of xenobiotic transporters through circRNA expression by the RNA editing enzyme ADAR1.


Assuntos
Adenosina Desaminase/metabolismo , MicroRNAs , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/genética , Resistência a Múltiplos Medicamentos , Humanos , Inosina/genética , Rim/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , RNA Circular/genética , Proteínas de Ligação a RNA/genética
9.
J Am Chem Soc ; 145(14): 8248-8260, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37011039

RESUMO

Detection of metabolic activity enables us to reveal the inherent metabolic state of cells and elucidate mechanisms underlying cellular homeostasis and growth. However, a fluorescence approach for the study of metabolic pathways is still largely unexplored. Herein, we have developed a new chemical probe for the fluorescence-based detection of fatty acid ß-oxidation (FAO), a key process in lipid catabolism, in cells and tissues. This probe serves as a substrate of FAO and forms a reactive quinone methide (QM) as a result of metabolic reactions. The liberated QM is covalently captured by intracellular proteins, and subsequent bio-orthogonal ligation with a fluorophore enables fluorescence analysis. This reaction-based sensing allowed us to detect FAO activity in cells at a desired emission wavelength using diverse analytical techniques including fluorescence imaging, in-gel fluorescence activity-based protein profiling (ABPP), and fluorescence-activated cell sorting (FACS). The probe was able to detect changes in FAO activity induced by chemical modulators in cultured cells. The probe was further employed for fluorescence imaging of FAO in mouse liver tissues and revealed the metabolic heterogeneity of FAO activity in hepatocytes by the combination of FACS and gene expression analysis, highlighting the utility of our probe as a chemical tool for fatty acid metabolism research.


Assuntos
Ácidos Graxos , Hepatócitos , Camundongos , Animais , Oxirredução , Fluorescência , Hepatócitos/metabolismo , Ácidos Graxos/metabolismo
10.
Biochem Biophys Res Commun ; 658: 88-96, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37027909

RESUMO

Renewal of retinal photoreceptor outer segments is conducted through daily shedding of distal photoreceptor outer segment tips and subsequent their phagocytosis by the adjacent retinal pigment epithelium (RPE) monolayer. Dysregulation of the diurnal clearance of photoreceptor outer segment tips has been implicated in age-related retinal degeneration, but it remains to be clarified how the circadian phagocytic activity of RPE cells is modulated by senescence. In this study, we used the human RPE cell line ARPE-19 to investigate whether hydrogen peroxide (H2O2)-induced senescence in ARPE-19 cells alters the circadian rhythm of their phagocytic activity. After synchronization of the cellular circadian clock by dexamethasone treatment, the phagocytic activity of normal ARPE-19 cells exhibited significant 24-h oscillation, but this oscillation was modulated by senescence. The phagocytic activity of senescent ARPE-19 cells increased constantly throughout the 24-h period, which still exhibited blunted circadian oscillation, accompanied by an alteration in the rhythmic expression of circadian clock genes and clock-controlled phagocytosis-related genes. The expression levels of REV-ERBα, a molecular component of the circadian clock, were constitutively increased in senescent ARPE-19 cells. Furthermore, pharmacological activation of REV-ERBα by its agonist SR9009 enhanced the phagocytic activity of normal ARPE-19 cells and increased the expression of clock-controlled phagocytosis-related genes. Our present findings extend to understand the role of circadian clock in the alteration of phagocytic activity in RPE during aging. Constitutive enhancement of phagocytic activity of senescent RPE may contribute to age-related retinal degeneration.


Assuntos
Senescência Celular , Ritmo Circadiano , Fagocitose , Epitélio Pigmentado da Retina , Humanos , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Proteínas CLOCK/genética , Dexametasona/farmacologia , Peróxido de Hidrogênio/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Fatores de Tempo
11.
Biochem Biophys Res Commun ; 675: 92-98, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463524

RESUMO

Chronic kidney disease (CKD) induces an imbalance in the intestinal microbiota, affecting various physiological functions and leading to cardiovascular inflammation and fibrosis. However, the cardiotoxic impact of intestinal microbiota-derived uremic substances in advanced renal dysfunction remains unexplored. Therefore, we developed a 5/6 nephrectomy (5/6Nx) mouse model to investigate the intestinal microbiota and the effects of administering vancomycin (VCM) on the microbiota and the cardiac pathology associated with CKD. Despite VCM administration after the development of irreversible glomerulosclerosis and tubulointerstitial fibrosis, blood indoxyl sulfate and phenyl sulfate levels, which are intestinal bacteria-derived uremic substances, brain natriuretic peptide levels, and the fibrotic area in the heart were decreased. Moreover, VCM administration prevented 5/6Nx-induced weight loss and prolonged survival time. Our findings suggest that VCM-induced changes in the intestinal microbiota composition ameliorate heart failure and improve survival rates by reducing intestinal microbiota-derived cardiotoxic substances despite advanced renal dysfunction. This highlights the potential of using the intestinal microbiota as a target to prevent and treat cardiovascular conditions associated with CKD.


Assuntos
Insuficiência Cardíaca , Insuficiência Renal Crônica , Camundongos , Animais , Vancomicina/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Fibrose , Administração Oral
12.
J Biol Chem ; 296: 100601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781748

RESUMO

The expression and function of some xenobiotic transporters vary according to the time of the day, causing the dosing time-dependent changes in drug disposition and toxicity. P-glycoprotein (P-gp), encoded by the ABCB1 gene, is highly expressed in the kidneys and functions in the renal elimination of various drugs. The elimination of several P-gp substrates was demonstrated to vary depending on administration time, but the underlying mechanism remains unclear. We found that adenosine deaminase acting on RNA (ADAR1) was involved in the circadian regulation of P-gp expression in human renal proximal tubular epithelial cells (RPTECs). After synchronization of the cellular circadian clock by dexamethasone treatment, the expression of P-gp exhibited a significant 24-h oscillation in RPTECs, but this oscillation was disrupted by the downregulation of ADAR1. Although ADAR1 catalyzes adenosine-to-inosine (A-to-I) RNA editing in double-stranded RNA substrates, no significant ADAR1-regulated editing sites were detected in the human ABCB1 transcripts in RPTECs. On the other hand, downregulation of ADAR1 induced alternative splicing in intron 27 of the human ABCB1 gene, resulting in the production of retained intron transcripts. The aberrant spliced transcript was sensitive to nonsense-mediated mRNA decay, leading to the decreased stability of ABCB1 mRNA and prevention of the 24-h oscillation of P-gp expression. These findings support the notion that ADAR1-mediated regulation of alternative splicing of the ABCB1 gene is a key mechanism of circadian expression of P-gp in RPTECs, and the regulatory mechanism may underlie the dosing time-dependent variations in the renal elimination of P-gp substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenosina Desaminase/metabolismo , Processamento Alternativo , Ritmo Circadiano , Regulação da Expressão Gênica , Rim/citologia , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Humanos , Edição de RNA
13.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012136

RESUMO

(1) Background: Oxaliplatin is used as first-line chemotherapy not only for colorectal cancer but also for gastric and pancreatic cancers. However, it induces peripheral neuropathy with high frequency as an adverse event, and there is no effective preventive or therapeutic method. (2) Methods: The effects of omeprazole, a proton pump inhibitor (PPI), on oxaliplatin-induced peripheral neuropathy (OIPN) was investigated using an in vivo model and a real-world database. (3) Results: In a rat model, oxaliplatin (4 mg/kg, i.p., twice a week for 4 weeks) caused mechanical hypersensitivity accompanied by sciatic nerve axonal degeneration and myelin sheath disorder. Repeated injection of omeprazole (5−20 mg/kg, i.p., five times per week for 4 weeks) ameliorated these behavioral and pathological abnormalities. Moreover, omeprazole did not affect the tumor growth inhibition of oxaliplatin in tumor bearing mice. Furthermore, clinical database analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) suggests that the group using omeprazole has a lower reporting rate of peripheral neuropathy of oxaliplatin-treated patients than the group not using (3.06% vs. 6.48%, p < 0.001, reporting odds ratio 0.44, 95% confidence interval 0.32−0.61). (4) Conclusions: These results show the preventing effect of omeprazole on OIPN.


Assuntos
Antineoplásicos , Neoplasias , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos/efeitos adversos , Camundongos , Neoplasias/tratamento farmacológico , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Oxaliplatina/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Ratos , Roedores
14.
Allergol Int ; 71(4): 437-447, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35850747

RESUMO

Clock genes, circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN), control various circadian rhythms in many biological processes such as physiology and behavior. Clock gene regulates many diseases such as cancer, immunological dysfunction, metabolic syndrome and sleep disorders etc. Chronotherapy is especially relevant, when the risk and/or intensity of the symptoms of disease vary predicably over time as exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease. Dosing time influences the effectiveness and toxicity of many drugs. The pharmacodynamics of medications as well as pharmacokinetics influences chronopharmacological phenomena. To escape from host immunity in the tumor microenvironment, cancer cells have acquired several pathways. Immune checkpoint therapy targeting programmed death 1 (PD-1) and its ligand (PD-L1) interaction had been approved for the treatment of patients with several types of cancers. Circadian expression of PD-1 is identified on tumor associated macrophages (TAMs), which is rationale for selecting the most appropriate time of day for administration of PD-1/PD-L1 inhibitors. The therapies for chronic kidney disease (CKD) are urgently needed because of a global health problem. The mechanism of the cardiac complications in mice with CKD had been related the GRP68 in circulating monocytes and serum accumulation of retinol. Development of a strategy to suppress retinol accumulation will be useful to prevent the cardiac complications of CKD. Therefore, we introduce an overview of the dosing time-dependent changes in therapeutic outcome and safety of drug for immune-related diseases.


Assuntos
Antígeno B7-H1 , Insuficiência Renal Crônica , Animais , Inibidores de Checkpoint Imunológico , Ligantes , Camundongos , Preparações Farmacêuticas/metabolismo , Receptor de Morte Celular Programada 1 , Vitamina A
15.
Genes Cells ; 25(4): 270-278, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32050049

RESUMO

The expression levels of many cell-surface proteins vary with the time of day. Glycoprotein 2 (Gp2), specifically expressed on the apical surface of M cells in Peyer's patches, functions as a transcytotic receptor for mucosal antigens. We report that cAMP response element-binding protein (CREB) regulates the transcription of the Gp2 gene, thereby generating the circadian change in its expression in mouse Peyer's patches. The transcytotic receptor activity of Gp2 was increased during the dark phase when the Gp2 protein abundance increased. Rhythmic expression of clock gene mRNA was observed in mouse Peyer's patches, and expression levels of Gp2 mRNA also exhibited circadian oscillation, with peak levels during the early dark phase. The promoter region of the mouse Gp2 gene contains several cAMP response elements (CREs). Chromatin immunoprecipitation assays revealed that CREB bound to the CREs in the Gp2 gene in Peyer's patches. Forskolin, which promotes CREB phosphorylation, increased the transcription of the Gp2 gene in Peyer's patches. As phosphorylation of CREB protein was increased when Gp2 gene transcription was activated, CREB may regulate the rhythmic expression of Gp2 mRNA in Peyer's patches. These findings suggest that intestinal immunity is controlled by the circadian clock system.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Proteínas Ligadas por GPI/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Animais , Proteínas Ligadas por GPI/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Mutantes
16.
Nat Chem Biol ; 15(3): 250-258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30643284

RESUMO

Irreversible inhibition of disease-associated proteins with small molecules is a powerful approach for achieving increased and sustained pharmacological potency. Here, we introduce α-chlorofluoroacetamide (CFA) as a novel warhead of targeted covalent inhibitor (TCI). Despite weak intrinsic reactivity, CFA-appended quinazoline showed high reactivity toward Cys797 of epidermal growth factor receptor (EGFR). In cells, CFA-quinazoline showed higher target specificity for EGFR than the corresponding Michael acceptors in a wide concentration range (0.1-10 µM). The cysteine adduct of the CFA derivative was susceptible to hydrolysis and reversibly yielded intact thiol but was stable in solvent-sequestered ATP-binding pocket of EGFR. This environment-dependent hydrolysis can potentially reduce off-target protein modification by CFA-based drugs. Oral administration of CFA quinazoline NS-062 significantly suppressed tumor growth in a mouse xenograft model. Further, CFA-appended pyrazolopyrimidine irreversibly inhibited Bruton's tyrosine kinase with higher target specificity. These results demonstrate the utility of CFA as a new class warheads for TCI.


Assuntos
Acetamidas/síntese química , Cisteína/metabolismo , Quinazolinas/síntese química , Acetamidas/química , Acetamidas/farmacologia , Animais , Antineoplásicos , Linhagem Celular , Receptores ErbB , Humanos , Camundongos , Camundongos Nus , Neoplasias , Fosfotransferases/fisiologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/antagonistas & inibidores , Quinazolinas/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biol Pharm Bull ; 44(6): 747-761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078807

RESUMO

The paired suprachiasmatic nuclei (SCN) is the circadian pacemaker in mammals. Clock genes ultimately regulates a vast array of circadian rhythms involved in biological, physiological and behavioral process. The clock genes are closely related to sleep disorders, metabolic syndromes, and cancer diseases. Monitoring rhythm, overcoming rhythm disruption, and manipulating rhythm from the perspective of the clock genes play an important role to improve chronopharmacotherapy. Such an approach should be achieved by overcoming the new challenges in drug delivery systems that match the circadian rhythm (Chrono-DDS). Gene and antibody delivery, targeting specific molecules for certain diseases have been focused in recent studies on pharmacotherapy. One of important candidates should also be clock genes. New drugs targeting the molecular clock are being developed to manage diseases in humans. The circadian dynamics of cancer stem cells are controlled by the tumor microenvironment and provide proof for its implication in chronotherapy against triple-negative breast cancer. To examine the relationship between the circadian clock and chronic kidney disease (CKD) exacervation leads to clarify the novel molecular mechanisms causing renal malfunction in mice with CKD. A novel inhibitor of cell cycle regulatory factors has been identified and the inhibitor repressed renal inflammation in a CKD mouse model. Therefore, this review aims to introduce the role of the molecular clock in the time-dependent dosing changes in the therapeutic effect and safety of a drug and the possibility of drug discovery and development based on the molecular clock.


Assuntos
Cronofarmacoterapia , Descoberta de Drogas , Animais , Relógios Circadianos , Sistemas de Liberação de Medicamentos , Monitoramento de Medicamentos , Humanos , Preparações Farmacêuticas/administração & dosagem , Farmacocinética , Farmacologia
18.
J Biol Chem ; 294(2): 547-558, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429219

RESUMO

Disruption of circadian rhythms has been implicated in an increased risk for cancer development. The Period2 (Per2) gene encodes one of the major components of the mammalian circadian clock, which plays a key role in controlling the circadian rhythms in physiology and behavior. PER2 has also been reported to suppress the malignant transformation of cells, but its role in the regulation of cancer susceptibility to chemotherapeutic drugs remains unclear. In this study, we found that oncogene-transformed embryonic fibroblasts prepared from Per2-mutant (Per2m/m ) mice, which are susceptible to both spontaneous and radiation-induced tumorigenesis, were resistant against common chemotherapeutic drugs and that this resistance is associated with up-regulation of the aldehyde dehydrogenase 3a1 (Aldh3a1) gene. Co-expression of the oncogenes H-rasV12 and SV40 large T-antigen induced malignant transformation of both WT and Per2m/m cells, but the cytotoxic effects of the chemotherapeutic agents methotrexate, gemcitabine, etoposide, vincristine, and oxaliplatin were significantly alleviated in the oncogene-transformed Per2m/m cells. Although introduction of the two oncogenes increased the expression of Aldh3a1 in both WT and Per2m/m cells, the ALDH3A1 protein levels in the Per2m/m cells were ∼7-fold higher than in WT cells. The elevated ALDH3A1 levels in the oncogene-transformed Per2m/m cells were sufficient to prevent chemotherapeutic drug-induced accumulation of reactive oxygen species. Consequently, shRNA-mediated suppression of Aldh3a1 expression relieved the chemoresistance of the Per2m/m cells. These results suggest a role for mutated PER2 in the development of multiple drug resistance and may inform therapeutic strategies for cancer management.


Assuntos
Aldeído Desidrogenase/genética , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos , Proteínas Circadianas Period/genética , Regulação para Cima , Animais , Carcinogênese/efeitos dos fármacos , Células Cultivadas , Relógios Circadianos , Camundongos Endogâmicos ICR , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/genética
19.
J Am Chem Soc ; 142(43): 18522-18531, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33047956

RESUMO

Expanding the repertoire of electrophiles with unique reactivity features would facilitate the development of covalent inhibitors with desirable reactivity profiles. We herein introduce bicyclo[1.1.0]butane (BCB) carboxylic amide as a new class of thiol-reactive electrophiles for selective and irreversible inhibition of targeted proteins. We first streamlined the synthetic routes to generate a variety of BCB amides. The strain-driven nucleophilic addition to BCB amides proceeded chemoselectively with cysteine thiols under neutral aqueous conditions, the rate of which was significantly slower than that of acrylamide. This reactivity profile of BCB amide was successfully exploited to develop covalent ligands targeting Bruton's tyrosine kinase (BTK). By tuning BCB amide reactivity and optimizing its disposition on the ligand, we obtained a selective covalent inhibitor of BTK. The in-gel activity-based protein profiling and mass spectrometry-based chemical proteomics revealed that the selected BCB amide had a higher target selectivity for BTK in human cells than did a Michael acceptor probe. Further chemical proteomic study revealed that BTK probes bearing different classes of electrophiles exhibited distinct off-target profiles. This result suggests that incorporation of BCB amide as a cysteine-directed electrophile could expand the capability to develop covalent inhibitors with the desired proteome reactivity profile.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Amidas/química , Compostos Bicíclicos com Pontes/química , Cisteína/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Linhagem Celular , Ciclobutanos/química , Humanos , Ligantes , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo
20.
Biochem Biophys Res Commun ; 513(2): 293-299, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30944082

RESUMO

The circadian rhythm, which regulates various body functions, is transcriptionally controlled by a series of clock gene clusters. The clock genes are related to the pathology of various kinds of diseases, which in turn, is related to aging. Aging in humans is a worldwide problem; it induces sleep disorders and disruption of the circadian rhythm. It also decreases ocular vision and appetite and weakens the synchronization of clock genes by light and food. Therefore, a simple method for the synchronization of clock genes in the body is required. In this study, the influence of microcurrent stimulation (MCS) on the circadian machinery in wild-type (WT) and Clock mutant (Clk/Clk) mice was investigated. MCS induced Per1 mRNA expression in cultured mouse astrocytes; cAMP response element (CRE) in the Per1 mouse promoter was found to be important for the induction of Per1 mRNA. In addition, MCS increased the Per1 mRNA levels in mouse livers and caused the phase advance of the Per1 expression rhythm. The protein expression rhythm of phosphor-cAMP response element-binding protein (pCREB) was altered and the phase of expression of pCREB protein advanced. Finally, the influence of MCS on the locomotor activity rhythm in WT and Clk/Clk mice was investigated. MCS caused the phase advance of the locomotor activity rhythm in WT and Clk/Clk mice. The results of this study indicate that MCS activated the clock machinery in mice; MCS may thus improve the quality of new treatment modalities in the future.


Assuntos
Ritmo Circadiano , Regulação da Expressão Gênica , Micronutrientes/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Micronutrientes/genética , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA