Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33495229

RESUMO

OPS-2071 is a novel quinolone antibacterial agent characterized by low oral absorption that reduces the risk of adverse events typical of fluoroquinolone class antibiotics. The in vitro and in vivo antibacterial activities of OPS-2071 against Clostridioides difficile were evaluated in comparison to vancomycin and fidaxomicin. OPS-2071 exhibited potent antibacterial activity against 54 clinically isolated C. difficile strains with a MIC of 0.125 µg/ml (MIC50) and 0.5 µg/ml (MIC90), making it more active than vancomycin on a concentration basis (MIC50, 2 µg/ml; MIC90, 4 µg/ml) and comparable to fidaxomicin (MIC50, 0.063 µg/ml; MIC90, 8 µg/ml). OPS-2071 showed equally potent antibacterial activity against both hypervirulent and nonhypervirulent strains, while a significant difference in susceptibility to fidaxomicin was observed. Spontaneous resistance to OPS-2071 and vancomycin was not observed; however, resistance to fidaxomicin was observed at 4× MIC. The mutant prevention concentration of OPS-2071 was 16-fold lower than those of fidaxomicin and vancomycin, and the postantibiotic effect of OPS-2071 was longer than those of fidaxomicin and vancomycin. Also, OPS-2071 showed low systemic exposure, with OPS-2071 having 2.9% oral bioavailability at 1 mg/kg in rats. Furthermore, OPS-2071 showed significant in vivo efficacy at 0.0313 mg/kg/day (50% effective doses), 39.0-fold and 52.1-fold lower than those of vancomycin and fidaxomicin, respectively, in a hamster model of C. difficile infection. OPS-2071 has the potential to become a new therapeutic option for treating C. difficile infection.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Quinolonas , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Testes de Sensibilidade Microbiana , Ratos
3.
Tuberculosis (Edinb) ; 111: 20-30, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30029909

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is the leading cause of death from an infectious disease globally. The widespread and ever-increasing resistance to TB drugs is reducing the effectiveness of treatment and jeopardizing TB control. New effective drugs with acceptable safety profiles are needed to turn the tide. Since the early 1990s, Otsuka Pharmaceutical Co., Ltd. has had a TB drug development program that resulted in the selection and development of delamanid (OPC-67683, Deltyba®), a first-in-class bicyclic nitroimidazole. Delamanid was initially approved by the European Medicines Agency (EMA) in 2014 for the treatment of adult pulmonary multi-drug resistant (MDR)-TB when an effective treatment regimen cannot otherwise be composed for reasons of resistance or tolerability. It has since been approved by several other countries/regions. In this review, we describe the history of delamanid's development, including the screening process, in vitro and in vivo characterization, as well as various clinical studies. Delamanid possesses potent activity against replicating, dormant, and intracellular MTB bacilli, and is bactericidal in mouse and guinea pig TB models. Delamanid resistance mechanisms have been attributed to genes in the F420-dependent deazaflavin nitroreductase bio-activation pathway, found in mycobacterium species but not in common bacterial or mammalian cells. Published susceptibility testing results from 744 clinical isolates from delamanid-naïve patients indicate that the natural resistance rate to delamanid is very low (1.3%). Delamanid is largely metabolized by albumin in serum, and to a much less extent by cytochrome P450 enzymes. Furthermore, it neither inhibits nor induces P450 enzymes. In terms of efficacy, delamanid demonstrated activity in an early bactericidal activity trial in drug susceptible pulmonary TB patients and increased 2-month sputum culture conversion rates when added to an optimized background regimen in MDR-TB patients in a phase 2b global clinical trial. In addition, recent results outside clinical studies show favourable responses in highly resistant TB patients including extensively drug resistant (XDR)-TB when treated with delamanid-containing regimens in routine programmatic settings. The primary safety concern with delamanid is QTcF interval prolongation, although this observation has thus far not been associated with any clinical cardiac events. Overall, delamanid appears to be a well-tolerated and safe anti-TB drug when compared to other drugs used to treat MDR-TB.


Assuntos
Antituberculosos/uso terapêutico , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis/efeitos dos fármacos , Nitroimidazóis/uso terapêutico , Oxazóis/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/efeitos adversos , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Nitroimidazóis/efeitos adversos , Oxazóis/efeitos adversos , Resultado do Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA