Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 585(7824): 298-302, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32669707

RESUMO

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Assuntos
Nucléolo Celular/enzimologia , Nucléolo Celular/genética , DNA Ribossômico/genética , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , RNA não Traduzido/genética , Ribossomos/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/fisiologia , DNA Helicases/metabolismo , DNA Intergênico/genética , Humanos , Enzimas Multifuncionais/metabolismo , Biossíntese de Proteínas , Estruturas R-Loop , RNA Helicases/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/metabolismo , Ribonuclease H/metabolismo , Ribossomos/química , Ribossomos/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
2.
J Immunol ; 211(10): 1561-1577, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756544

RESUMO

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.


Assuntos
Aterosclerose , Hipercolesterolemia , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Glicólise , Aterosclerose/metabolismo , Colesterol/metabolismo , Antioxidantes/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
3.
Biochem Biophys Res Commun ; 585: 196-202, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34813980

RESUMO

Cancer stem cells have an important role in tumour biology. While their identity in haematological malignancies is clearly defined, stem cell identity remains elusive in some solid tumours. Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer, but the identity or existence of ccRCC stem cells remains unknown. We aimed to discern their existence using the widely utilised side population approach in ccRCC cell lines. In all cells tested, a well-defined side population was identified, and cell-based assays suggested stem-like properties. However, limiting dilution assays revealed comparable tumour initiating abilities and tumour histology of side and non-side populations, and single cell RNA-sequencing revealed minimal differences between these populations. The results indicate that the side population approach is not sufficient for cancer stem cell discovery in ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Células-Tronco Neoplásicas/metabolismo , Células da Side Population/metabolismo , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , RNA-Seq/métodos , Análise de Célula Única/métodos , Transplante Heterólogo , Carga Tumoral/genética
4.
Arterioscler Thromb Vasc Biol ; 39(3): 467-481, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602302

RESUMO

Objective- Calcific aortic valve (AV) disease, characterized by AV sclerosis and calcification, is a major cause of death in the aging population; however, there are no effective medical therapies other than valve replacement. AV calcification preferentially occurs on the fibrosa side, exposed to disturbed flow (d-flow), whereas the ventricularis side exposed to predominantly stable flow remains protected by unclear mechanisms. Here, we tested the role of novel flow-sensitive UBE2C (ubiquitin E2 ligase C) and microRNA-483-3p (miR-483) in flow-dependent AV endothelial function and AV calcification. Approach and Results- Human AV endothelial cells and fresh porcine AV leaflets were exposed to stable flow or d-flow. We found that UBE2C was upregulated by d-flow in human AV endothelial cells in the miR-483-dependent manner. UBE2C mediated OS-induced endothelial inflammation and endothelial-mesenchymal transition by increasing the HIF-1α (hypoxia-inducible factor-1α) level. UBE2C increased HIF-1α by ubiquitinating and degrading its upstream regulator pVHL (von Hippel-Lindau protein). These in vitro findings were corroborated by immunostaining studies using diseased human AV leaflets. In addition, we found that reduction of miR-483 by d-flow led to increased UBE2C expression in human AV endothelial cells. The miR-483 mimic protected against endothelial inflammation and endothelial-mesenchymal transition in human AV endothelial cells and calcification of porcine AV leaflets by downregulating UBE2C. Moreover, treatment with the HIF-1α inhibitor (PX478) significantly reduced porcine AV calcification in static and d-flow conditions. Conclusions- These results suggest that miR-483 and UBE2C and pVHL are novel flow-sensitive anti- and pro-calcific AV disease molecules, respectively, that regulate the HIF-1α pathway in AV. The miR-483 mimic and HIF-1α pathway inhibitors may serve as potential therapeutics of calcific AV disease.


Assuntos
Estenose da Valva Aórtica/etiologia , Valva Aórtica/patologia , Calcinose/etiologia , Células Endoteliais/metabolismo , Hemorreologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , MicroRNAs/genética , Enzimas de Conjugação de Ubiquitina/biossíntese , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/metabolismo , Calcinose/patologia , Adesão Celular , Transdiferenciação Celular , Células Cultivadas , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Inflamação , MicroRNAs/agonistas , Monócitos/fisiologia , Compostos de Mostarda/farmacologia , Oligonucleotídeos/farmacologia , Técnicas de Cultura de Órgãos , Fenilpropionatos/farmacologia , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Reologia , Estresse Mecânico , Suínos , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitinação
5.
Semin Cell Dev Biol ; 58: 70-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27297135

RESUMO

Mutations in RAS and various components of the Ras signaling pathways are among the most common causative genetic alterations in human cancers, accounting up to 25% of lung cancers and over 90% of pancreatic cancers. Ras is a small GTPase that functions as a 'molecular switch' in a number of signaling pathways that regulate vital eukaryotic cellular functions. Despite our comprehensive understanding of the molecular mechanisms governing the activity of Ras, the clinical outcome of various pharmacologic anti-cancer strategies designed to directly inactivate Ras have been less than satisfactory. In this review, the more recently uncovered mode of regulation of Ras involving non-receptor tyrosine kinase and phosphatase, which have long been suspected of contributing to the oncogenic potential of Ras, will be discussed in the context of both function and structure.


Assuntos
Proteínas ras/química , Proteínas ras/metabolismo , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Modelos Biológicos , Fosforilação , Transdução de Sinais , Relação Estrutura-Atividade
6.
J Biol Chem ; 292(3): 936-944, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27956548

RESUMO

Lipids are important nutrients that proliferating cells require to maintain energy homeostasis as well as to build plasma membranes for newly synthesized cells. Previously, we identified nutrient-sensing checkpoints that exist in the latter part of the G1 phase of the cell cycle that are dependent upon essential amino acids, Gln, and finally, a checkpoint mediated by mammalian target of rapamycin (mTOR), which integrates signals from both nutrients and growth factors. In this study, we have identified and temporally mapped a lipid-mediated G1 checkpoint. This checkpoint is located after the Gln checkpoint and before the mTOR-mediated cell cycle checkpoint. Intriguingly, clear cell renal cell carcinoma cells (ccRCC) have a dysregulated lipid-mediated checkpoint due in part to defective phosphatase and tensin homologue (PTEN). When deprived of lipids, instead of arresting in G1, these cells continue to cycle and utilize lipid droplets as a source of lipids. Lipid droplets have been known to maintain endoplasmic reticulum homeostasis and prevent cytotoxic endoplasmic reticulum stress in ccRCC. Dysregulation of the lipid-mediated checkpoint forces these cells to utilize lipid droplets, which could potentially lead to therapeutic opportunities that exploit this property of ccRCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Membrana Celular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Metabolismo dos Lipídeos , Carcinoma de Células Renais/patologia , Membrana Celular/patologia , Estresse do Retículo Endoplasmático , Glutamina/metabolismo , Humanos , Neoplasias Renais , Células MCF-7 , Proteínas de Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
J Biol Chem ; 291(14): 7357-72, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26846855

RESUMO

von Hippel-Lindau (VHL) disease is a rare familial cancer predisposition syndrome caused by a loss or mutation in a single gene,VHL, but it exhibits a wide phenotypic variability that can be categorized into distinct subtypes. The phenotypic variability has been largely argued to be attributable to the extent of deregulation of the α subunit of hypoxia-inducible factor α, a well established target of VHL E3 ubiquitin ligase, ECV (Elongins/Cul2/VHL). Here, we show that erythropoietin receptor (EPOR) is hydroxylated on proline 419 and 426 via prolyl hydroxylase 3. EPOR hydroxylation is required for binding to the ß domain of VHL and polyubiquitylation via ECV, leading to increased EPOR turnover. In addition, several type-specific VHL disease-causing mutants, including those that have retained proper binding and regulation of hypoxia-inducible factor α, showed a severe defect in binding prolyl hydroxylated EPOR peptides. These results identify EPOR as the secondbona fidehydroxylation-dependent substrate of VHL that potentially influences oxygen homeostasis and contributes to the complex genotype-phenotype correlation in VHL disease.


Assuntos
Oxigênio/metabolismo , Proteólise , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células HEK293 , Humanos , Receptores da Eritropoetina/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/metabolismo , Doença de von Hippel-Lindau/patologia
8.
Proc Natl Acad Sci U S A ; 111(36): E3785-94, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157176

RESUMO

Mutations in Ras GTPase and various other components of the Ras signaling pathways are among the most common genetic alterations in human cancers and also have been identified in several familial developmental syndromes. Over the past few decades it has become clear that the activity or the oncogenic potential of Ras is dependent on the nonreceptor tyrosine kinase Src to promote the Ras/Raf/MAPK pathway essential for proliferation, differentiation, and survival of eukaryotic cells. However, no direct relationship between Ras and Src has been established. We show here that Src binds to and phosphorylates GTP-, but not GDP-, loaded Ras on a conserved Y32 residue within the switch I region in vitro and that in vivo, Ras-Y32 phosphorylation markedly reduces the binding to effector Raf and concomitantly increases binding to GTPase-activating proteins and the rate of GTP hydrolysis. These results suggest that, in the context of predetermined crystallographic structures, Ras-Y32 serves as an Src-dependent keystone regulatory residue that modulates Ras GTPase activity and ensures unidirectionality to the Ras GTPase cycle.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Fosfotirosina/metabolismo , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , GTP Fosfo-Hidrolases/química , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Proteínas de Membrana/química , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fosforilação , Ligação Proteica , Quinases raf/metabolismo
9.
EMBO J ; 31(11): 2448-60, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22562152

RESUMO

Oxygen is essential for eukaryotic life and is inextricably linked to the evolution of multicellular organisms. Proper cellular response to changes in oxygen tension during normal development or pathological processes, such as cardiovascular disease and cancer, is ultimately regulated by the transcription factor, hypoxia-inducible factor (HIF). Over the past decade, unprecedented molecular insight has been gained into the mammalian oxygen-sensing pathway involving the canonical oxygen-dependent prolyl-hydroxylase domain-containing enzyme (PHD)-von Hippel-Lindau tumour suppressor protein (pVHL) axis and its connection to cellular metabolism. Here we review recent notable advances in the field of hypoxia that have shaped a more complex model of HIF regulation and revealed unique roles of HIF in a diverse range of biological processes, including immunity, development and stem cell biology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/metabolismo , Desenvolvimento Embrionário , Humanos , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Imunidade , Proteínas de Membrana/metabolismo , Camundongos , Receptores Notch/metabolismo , Proteínas Repressoras , Sirtuína 3/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
10.
Proc Natl Acad Sci U S A ; 109(13): 4892-7, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22411794

RESUMO

Caveolin-1 (CAV1) is an essential structural constituent of caveolae, specialized lipid raft microdomains on the cell membrane involved in endocytosis and signal transduction, which are inexplicably deregulated and are associated with aggressiveness in numerous cancers. Here we identify CAV1 as a direct transcriptional target of oxygen-labile hypoxia-inducible factor 1 and 2 that accentuates the formation of caveolae, leading to increased dimerization of EGF receptor within the confined surface area of caveolae and its subsequent phosphorylation in the absence of ligand. Hypoxia-inducible factor-dependent up-regulation of CAV1 enhanced the oncogenic potential of tumor cells by increasing the cell proliferative, migratory, and invasive capacities. These results support a concept in which a crisis in oxygen availability or a tumor exhibiting hypoxic signature triggers caveolae formation that bypasses the requirement for ligand engagement to initiate receptor activation and the critical downstream adaptive signaling during a period when ligands required to activate these receptors are limited or are not yet available.


Assuntos
Caveolina 1/metabolismo , Receptores ErbB/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais , Regulação para Cima , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cavéolas/metabolismo , Cavéolas/ultraestrutura , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Sequência Conservada/genética , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Elementos de Resposta/genética , Transcrição Gênica , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
11.
Cancer Cell ; 10(2): 95-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16904608

RESUMO

E2-EPF ubiquitin carrier protein (UCP) is a member of an E2 family of enzymes that catalyzes the ligation of ubiquitin to proteins targeted for destruction by the proteasome. UCP is overexpressed in common human cancers, suggesting its involvement in oncogenesis, but a physiologic target of UCP has not been identified. In a recent report published in Nature Medicine, Jung et al. identified von Hippel-Lindau (VHL) tumor suppressor protein, which targets the alpha subunit of hypoxia-inducible factor (HIF) for ubiquitin-mediated destruction, as a bona fide substrate of UCP and demonstrated a potential pVHL-HIF pathway-dependent role for UCP in cancer development.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Transdução de Sinais/fisiologia
12.
Sci Rep ; 14(1): 14799, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926538

RESUMO

The oxygen-labile transcription factor called hypoxia-inducible factor (HIF) is responsible for the cellular and organismal adaptive response to reduced oxygen availability. Deregulation of HIF is associated with the pathogenesis of major human diseases including cardiovascular disease and cancer. Under normoxia, the HIFα subunit is hydroxylated on conserved proline residues within the oxygen-dependent degradation domain (ODD) that labels HIFα for proteasome-mediated degradation. Despite similar oxygen-dependent degradation machinery acting on HIF1α and HIF2α, these two paralogs have been shown to exhibit unique kinetics under hypoxia, which suggests that other regulatory processes may be at play. Here, we characterize the protease activity found in rabbit reticulocytes that specifically cleaves the ODD of HIF1α but not HIF2α. Notably, the cleavage product is observed irrespective of the oxygen-dependent prolyl-hydroxylation potential of HIF1α, suggesting independence from oxygen. HIF1α M561T substitution, which mimics an evolutionary substitution that occurred during the duplication and divergence of HIF1α and HIF2α, diminished the cleavage of HIF1α. Protease inhibitor screening suggests that cysteine proteases cathepsins L and B preferentially cleave HIF1αODD, thereby revealing an additional layer of differential HIF regulation.


Assuntos
Catepsina L , Subunidade alfa do Fator 1 Induzível por Hipóxia , Oxigênio , Proteólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Catepsina L/metabolismo , Catepsina L/genética , Coelhos , Oxigênio/metabolismo , Humanos , Reticulócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hidroxilação
13.
Commun Biol ; 7(1): 240, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418569

RESUMO

Pacak-Zhuang syndrome is caused by mutations in the EPAS1 gene, which encodes for one of the three hypoxia-inducible factor alpha (HIFα) paralogs HIF2α and is associated with defined but varied phenotypic presentations including neuroendocrine tumors and polycythemia. However, the mechanisms underlying the complex genotype-phenotype correlations remain incompletely understood. Here, we devised a quantitative method for determining the dissociation constant (Kd) of the HIF2α peptides containing disease-associated mutations and the catalytic domain of prolyl-hydroxylase (PHD2) using microscale thermophoresis (MST) and showed that neuroendocrine-associated Class 1 HIF2α mutants have distinctly higher Kd than the exclusively polycythemia-associated Class 2 HIF2α mutants. Based on the co-crystal structure of PHD2/HIF2α peptide complex at 1.8 Å resolution, we showed that the Class 1 mutated residues are localized to the critical interface between HIF2α and PHD2, adjacent to the PHD2 active catalytic site, while Class 2 mutated residues are localized to the more flexible region of HIF2α that makes less contact with PHD2. Concordantly, Class 1 mutations were found to significantly increase HIF2α-mediated transcriptional activation in cellulo compared to Class 2 counterparts. These results reveal a structural mechanism in which the strength of the interaction between HIF2α and PHD2 is at the root of the general genotype-phenotype correlations observed in Pacak-Zhuang syndrome.


Assuntos
Policitemia , Prolil Hidroxilases , Humanos , Prolil Hidroxilases/genética , Hidroxilação , Policitemia/genética , Mutação , Pró-Colágeno-Prolina Dioxigenase
14.
J Biol Chem ; 287(34): 29003-20, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22745131

RESUMO

The processes by which cells sense and respond to ambient oxygen concentration are fundamental to cell survival and function, and they commonly target gene regulatory events. To date, however, little is known about the link between the microRNA pathway and hypoxia signaling. Here, we show in vitro and in vivo that chronic hypoxia impairs Dicer (DICER1) expression and activity, resulting in global consequences on microRNA biogenesis. We show that von Hippel-Lindau-dependent down-regulation of Dicer is key to the expression and function of hypoxia-inducible factor α (HIF-α) subunits. Specifically, we show that EPAS1/HIF-2α is regulated by the Dicer-dependent microRNA miR-185, which is down-regulated by hypoxia. Full expression of hypoxia-responsive/HIF target genes in chronic hypoxia (e.g. VEGFA, FLT1/VEGFR1, KDR/VEGFR2, BNIP3L, and SLC2A1/GLUT1), the function of which is to regulate various adaptive responses to compromised oxygen availability, is also dependent on hypoxia-mediated down-regulation of Dicer function and changes in post-transcriptional gene regulation. Therefore, functional deficiency of Dicer in chronic hypoxia is relevant to both HIF-α isoforms and hypoxia-responsive/HIF target genes, especially in the vascular endothelium. These findings have relevance to emerging therapies given that we show that the efficacy of RNA interference under chronic hypoxia, but not normal oxygen availability, is Dicer-dependent. Collectively, these findings show that the down-regulation of Dicer under chronic hypoxia is an adaptive mechanism that serves to maintain the cellular hypoxic response through HIF-α- and microRNA-dependent mechanisms, thereby providing an essential mechanistic insight into the oxygen-dependent microRNA regulatory pathway.


Assuntos
Adaptação Fisiológica/fisiologia , RNA Helicases DEAD-box/biossíntese , Endotélio Vascular/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Oxigênio/metabolismo , Ribonuclease III/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular , RNA Helicases DEAD-box/genética , Endotélio Vascular/citologia , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 1/genética , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Ribonuclease III/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
15.
Cancer Res Commun ; 3(12): 2608-2622, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38032104

RESUMO

Survival rates among patients with high-risk neuroblastoma remain low and novel therapies for recurrent neuroblastomas are required. ALK is commonly mutated in primary and relapsed neuroblastoma tumors and ALK tyrosine kinase inhibitors (TKI) are promising treatments for ALK-driven neuroblastoma; however, innate or adaptive resistance to single-agent ALK-TKIs remain a clinical challenge. Recently, SHP2 inhibitors have been shown to overcome ALK-TKI resistance in lung tumors harboring ALK rearrangements. Here, we have assessed the efficacy of the SHP2 inhibitor TNO155 alone and in combination with the ALK-TKIs crizotinib, ceritinib, or lorlatinib for the treatment of ALK-driven neuroblastoma using in vitro and in vivo models. In comparison to wild-type, ALK-mutant neuroblastoma cell lines were more sensitive to SHP2 inhibition with TNO155. Moreover, treatment with TNO155 and ALK-TKIs synergistically reduced cell growth and promoted inactivation of ALK and MAPK signaling in ALK-mutant neuroblastoma cells. ALK-mutant cells engrafted into larval zebrafish and treated with single agents or dual SHP2/ALK inhibitors showed reduced growth and invasion. In murine ALK-mutant xenografts, tumor growth was likewise reduced or delayed, and survival was prolonged upon combinatorial treatment of TNO155 and lorlatinib. Finally, we show that lorlatinib-resistant ALK-F1174L neuroblastoma cells harbor additional RAS-MAPK pathway alterations and can be resensitized to lorlatinib when combined with TNO155 in vitro and in vivo. Our results report the first evaluation of TNO155 in neuroblastoma and suggest that combinatorial inhibition of ALK and SHP2 could be a novel approach to treating ALK-driven neuroblastoma, potentially including the increasingly common tumors that have developed resistance to ALK-TKIs. SIGNIFICANCE: These findings highlight the translatability between zebrafish and murine models, provide evidence of aberrant RAS-MAPK signaling as an adaptive mechanism of resistance to lorlatinib, and demonstrate the clinical potential for SHP2/ALK inhibitor combinations for the treatment of ALK-mutant neuroblastoma, including those with acquired tolerance or potentially resistance to ALK-TKIs.


Assuntos
Neuroblastoma , Peixe-Zebra , Humanos , Camundongos , Animais , Peixe-Zebra/metabolismo , Quinase do Linfoma Anaplásico , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Lactamas Macrocíclicas/farmacologia , Neuroblastoma/tratamento farmacológico
16.
Am J Pathol ; 178(2): 853-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21281817

RESUMO

Molecular pathways associated with pathogenesis of sporadic papillary renal cell carcinoma (PRCC), the second most common form of kidney cancer, are poorly understood. We analyzed primary tumor specimens from 35 PRCC patients treated by nephrectomy via gene expression analysis and tissue microarrays constructed from an additional 57 paraffin-embedded PRCC samples via immunohistochemistry. Gene products were validated and further studied by Western blot analyses using primary PRCC tumor samples and established renal cell carcinoma cell lines, and potential associations with pathologic variables and survival in 27 patients with follow-up information were determined. We show that the expression of E2-EPF ubiquitin carrier protein, which targets the principal negative regulator of hypoxia-inducible factor (HIF), von Hippel-Lindau protein, for proteasome-dependent degradation, is markedly elevated in the majority of PRCC tumors exhibiting increased HIF1α expression, and is associated with poor prognosis. In addition, we identified multiple hypoxia-responsive elements within the E2-EPF promoter, and for the first time we demonstrated that E2-EPF is a hypoxia-inducible gene directly regulated via HIF1. These findings reveal deregulation of the oxygen-sensing pathway impinging on the positive feedback mechanism of HIF1-mediated regulation of E2-EPF in PRCC.


Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Bases , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/patologia , Hipóxia Celular , Progressão da Doença , Feminino , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Dados de Sequência Molecular , Mutação/genética , Prognóstico , Elementos de Resposta/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
17.
EMBO Rep ; 11(10): 777-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20829881

RESUMO

ΔNp63α is a critical pro-survival protein overexpressed in 80% of head and neck squamous cell carcinomas (HNSCCs) where it inhibits TAp73ß transcription of p53-family target genes, which is thought to increase HNSCC resistance to chemotherapy-induced cell death. However, the mechanisms governing ΔNp63α function are largely unknown. In this study, we identify special AT-rich-binding protein 2 (SATB2) as a new ΔNp63α-binding protein that is preferentially expressed in advanced-stage primary HNSCC and show that SATB2 promotes chemoresistance by enhancing ΔNp63α-mediated transrepression by augmenting ΔNp63α engagement to p53-family responsive elements. Furthermore, SATB2 expression positively correlates with HNSCC chemoresistance, and RNA interference-mediated knockdown of endogenous SATB2 re-sensitizes HNSCC cells to chemotherapy- and γ-irradiation-induced apoptosis, irrespective of p53 status. These findings unveil SATB2 as a pivotal modulator of ΔNp63α that governs HNSCC cell survival.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Genes p53 , Humanos , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
18.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040300

RESUMO

von Hippel-Lindau (VHL) disease is a rare hereditary cancer syndrome that causes a predisposition to renal clear-cell carcinoma, hemangioblastoma, pheochromocytoma, and autosomal-recessive familial polycythemia. pVHL is the substrate conferring subunit of an E3 ubiquitin ligase complex that binds to the three hypoxia-inducible factor alpha subunits (HIF1-3α) for polyubiquitylation under conditions of normoxia, targeting them for immediate degradation by the proteasome. Certain mutations in pVHL have been determined to be causative of VHL disease through the disruption of HIFα degradation. However, it remains a focus of investigation and debate whether the disruption of HIFα degradation alone is sufficient to explain the complex genotype-phenotype relationship of VHL disease or whether the other lesser or yet characterized substrates and functions of pVHL impact the development of the VHL disease stigmata; the elucidation of which would have a significant ramification to the direction of research efforts and future management and care of VHL patients and for those manifesting sporadic counterparts of VHL disease. Here, we examine the current literature including the other emergent pseudohypoxic diseases and propose that the VHL disease-phenotypic spectrum could be explained solely by the varied disruption of HIFα signaling upon the loss or mutation in pVHL.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Carcinoma de Células Renais/genética , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Renais/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Doença de von Hippel-Lindau/genética
19.
J Mol Biol ; 434(2): 167392, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34896362

RESUMO

KRAS is one of the most frequently mutated oncogenes in human cancers. Despite nearly 40 years of research, KRAS remains largely undruggable, in part due to an incomplete understanding of its biology. Recently, KRAS dimerization was discovered to play an important role in its signalling function. The KRAS D154Q mutant was described as a dimer-deficient variant that can be used to study the effect of dimerization in KRAS oncogenicity. However, we show here that KRAS D154Q homo- and heterodimerized with KRAS WT using three separate protein-protein interaction assays, and that oncogenic KRAS dimerization was not negatively impacted by the presence of a secondary D154Q mutation. In conclusion, we advise caution in using this variant to study the purpose of dimerization in KRAS oncogenic behaviour.


Assuntos
Mutação , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Dimerização , Humanos , Imunoprecipitação , Neoplasias/terapia , Transdução de Sinais
20.
PLoS Genet ; 4(9): e1000176, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18773095

RESUMO

Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase EGLN2 [corrected] a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of EGLN2 [corrected] in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma.


Assuntos
Adenoma Oxífilo/genética , Adenoma Oxífilo/metabolismo , Pareamento Cromossômico/genética , Cromossomos Humanos Par 19 , Dioxigenases/genética , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas Nucleares/genética , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 19/metabolismo , Dioxigenases/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Proteínas Nucleares/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA