Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Biophys Res Commun ; 488(2): 285-290, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28479246

RESUMO

Human AlkB homolog 3 (ALKBH3) is overexpressed in non-small cell lung cancers (NSCLC) and its high expression is significantly correlated with poor prognosis. While ALKBH3 knockdown induces apoptosis in NSCLC cells, the underlying anti-apoptotic mechanisms of ALKBH3 in NSCLC cells remain unclear. Here we show that ALKBH3 knockdown induces cell cycle arrest or apoptosis depending on the TP53 gene status in NSCLC cells. In comparison to parental cells, TP53-knockout A549 cells showed DNA damage-responsive signal induced by ALKBH3 knockdown. TP53 knockout shifted the phenotypes of A549 cells induced by ALKBH3 knockdown from cell cycle arrest to apoptosis induction, suggesting that the TP53 gene status is a critical determinant of the phenotypes induced by ALKBH3 knockdown in NSCLC cells.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/deficiência , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteína Supressora de Tumor p53/genética , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Dano ao DNA , Humanos , Fenótipo , Células Tumorais Cultivadas
2.
Biochem Biophys Res Commun ; 477(3): 413-8, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27329810

RESUMO

Human AlkB homolog 8 (ALKBH8) is highly expressed in high-grade, superficially and deeply invasive bladder cancer. Moreover, ALKBH8 knockdown induces apoptosis in bladder cancer cells. However, the underlying anti-apoptotic mechanism of ALKBH8 in bladder cancer cells has thus far remained unclear. Moreover, there is no direct evidence that highly expressed ALKBH8 is involved in tumor progression in vivo. We here show that ALKBH8 knockdown induced apoptosis via downregulating the protein expression of survivin, an anti-apoptotic factor also exhibiting increased levels in bladder cancer. We also clarify that ALKBH8 transgenic mice showed an accelerated rate of bladder tumor mass and invasiveness in an N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced bladder cancer model. These findings suggest that the high expression of ALKBH8 is critical for the growth and progression of bladder cancer.


Assuntos
Homólogo AlkB 8 da RNAt Metiltransferase/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias da Bexiga Urinária/patologia , Homólogo AlkB 8 da RNAt Metiltransferase/genética , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Survivina , Neoplasias da Bexiga Urinária/metabolismo
3.
Bioorg Med Chem Lett ; 24(4): 1071-4, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461353

RESUMO

A series of 1-aryl-3,4-substituted-1H-pyrazol-5-ol derivatives was synthesized and evaluated as prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors to obtain a novel anti-prostate cancer drug. After modifying 1-(1H-benzimidazol-2-yl)-3,4-dimethyl-1H-pyrazol-5-ol (1), a hit compound found during random screening using a recombinant PCA-1/ALKBH3, 1-(1H-5-methylbenzimidazol-2-yl)-4-benzyl-3-methyl-1H-pyrazol-5-ol (35, HUHS015), was obtained as a potent PCA-1/ALKBH3 inhibitor both in vitro and in vivo. The bioavailability (BA) of 35 was 7.2% in rats after oral administration. As expected, continuously administering 35 significantly suppressed the growth of DU145 cells, which are human hormone-independent prostate cancer cells, in a mouse xenograft model without untoward effects.


Assuntos
Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Desenho de Fármacos , Neoplasias da Próstata/tratamento farmacológico , Pirazóis/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Pirazóis/administração & dosagem , Pirazóis/síntese química , Ratos , Relação Estrutura-Atividade
4.
J Pharm Biomed Anal ; 197: 113943, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601155

RESUMO

There are more than 150 types of naturally occurring modified nucleosides, which are believed to be involved in various biological processes. Recently, an ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) technique has been developed to measure low levels of modified nucleosides. A comprehensive analysis of modified nucleosides will lead to a better understanding of intracellular ribonucleic acid modification, but this analysis requires high-sensitivity measurements. In this perspective, we established a highly sensitive and quantitative method using the newly developed ion source, UniSpray. A mass spectrometer was used with a UniSpray source in positive ion mode. Our UHPLC-UniSpray-MS/MS methodology separated and detected the four major nucleosides, 42 modified nucleosides, and dG15N5 (internal standard) in 15 min. The UniSpray method provided good correlation coefficients (>0.99) for all analyzed nucleosides, and a wide range of linearity for 35 of the 46 nucleosides. Additionally, the accuracy and precision values satisfied the criteria of <15% for higher concentrations and <20% for the lowest concentrations of all nucleosides. We also investigated whether this method could measure nucleosides in biological samples using mouse tissues and non-small cell lung cancer clinical specimens. We were able to detect 43 and 31 different modified nucleosides from mouse and clinical tissues, respectively. We also found significant differences in the levels of N6-methyl-N6-threonylcarbamoyladenosine (m6t6A), 1-methylinosine (m1I), 2'-O-methylcytidine (Cm), 5-carbamoylmethyluridine (ncm5U), 5-methoxycarbonylmethyl-2-thiouridine (mcm5S2U), and 5-methoxycarbonylmethyl-2'-O-methyluridine (mcm5Um) between cancerous and noncancerous tissues. In conclusion, we developed a highly sensitive methodology using UHPLC-UniSpray-MS/MS to simultaneously detect and quantify modified nucleosides, which can be used for analysis of biological samples.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Cromatografia Líquida de Alta Pressão , Camundongos , Nucleosídeos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
5.
Mol Cancer Res ; 13(3): 565-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25381221

RESUMO

UNLABELLED: Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney, and clear cell RCC (ccRCC) represents its most common histological subtype. To identify a therapeutic target for ccRCC, miRNA expression signatures from ccRCC clinical specimens were analyzed. miRNA microarray and real-time PCR analyses revealed that miR-629 expression was significantly upregulated in human ccRCC compared with adjacent noncancerous renal tissue. Functional inhibition of miR-629 by a hairpin miRNA inhibitor suppressed ccRCC cell motility and invasion. Mechanistically, miR-629 directly targeted tripartite motif-containing 33 (TRIM33), which inhibits the TGFß/Smad signaling pathway. In clinical ccRCC specimens, downregulation of TRIM33 was observed with the association of both pathologic stages and grades. The miR-629 inhibitor significantly suppressed TGFß-induced Smad activation by upregulating TRIM33 expression and subsequently inhibited the association of Smad2/3 and Smad4. Moreover, a miR-629 mimic enhanced the effect of TGFß on the expression of epithelial-mesenchymal transition-related factors as well as on the motility and invasion in ccRCC cells. These findings identify miR-629 as a potent regulator of the TGFß/Smad signaling pathway via TRIM33 in ccRCC. IMPLICATIONS: This study suggests that miR-629 has biomarker potential through its ability to regulate TGFß/Smad signaling and accelerate ccRCC cell motility and invasion.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , MicroRNAs/genética , Fatores de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Metástase Neoplásica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
6.
Mol Cancer Res ; 12(12): 1807-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25092917

RESUMO

UNLABELLED: Clear cell renal cell carcinoma (ccRCC) is the most common histologically defined subtype of renal cell carcinoma (RCC). To define the molecular mechanism in the progression of ccRCC, we focused on LOX-like protein 2 (LOXL2), which is critical for the first step in collagen and elastin cross-linking. Using exon array analysis and quantitative validation, LOXL2 was shown to be significantly upregulated in clinical specimens of human ccRCC tumor tissues, compared with adjacent noncancerous renal tissues, and this elevated expression correlated with the pathologic stages of ccRCC. RNAi-mediated knockdown of LOXL2 resulted in marked suppression of stress-fiber and focal adhesion formation in ccRCC cells. Moreover, LOXL2 siRNA knockdown significantly inhibited cell growth, migration, and invasion. Mechanistically, LOXL2 regulated the degradation of both integrins α5 (ITGAV5) and ß1 (ITGB1) via protease- and proteasome-dependent systems. In clinical ccRCC specimens, the expression levels of LOXL2 and integrin α5 correlated with the pathologic tumor grades. In conclusion, LOXL2 is a potent regulator of integrin α5 and integrin ß1 protein levels and functions in a tumor-promoting capacity in ccRCC. IMPLICATIONS: This is the first report demonstrating that LOXL2 is highly expressed and involved in ccRCC progression by regulating the levels of integrins α5 and ß1.


Assuntos
Aminoácido Oxirredutases/genética , Carcinoma de Células Renais/patologia , Integrina alfa5/metabolismo , Integrina beta1/metabolismo , Neoplasias Renais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácido Oxirredutases/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA