RESUMO
The family Cervidae is the second most diverse family in the infraorder Pecora and is characterized by a striking variability in the diploid chromosome numbers among species, ranging from 6 to 70. Chromosomal rearrangements in Cervidae have been studied in detail by chromosome painting. There are many comparative cytogenetic data for both subfamilies (Cervinae and Capreolinae) based on homologies with chromosomes of cattle and Chinese muntjac. Previously it was found that interchromosomal rearrangements are the major type of rearrangements occurring in the Cervidae family. Here, we build a detailed chromosome map of a female reindeer (Rangifer tarandus, 2n = 70, Capreolinae) and a female black muntjac (Muntiacus crinifrons, 2n = 8, Cervinae) with dromedary homologies to find out what other types of rearrangements may have underlined the variability of Cervidae karyotypes. To track chromosomal rearrangements and the distribution of nucleolus organizer regions not only during Cervidae but also Pecora evolution, we summarized new data and compared them with chromosomal maps of other already studied species. We discuss changes in the pecoran ancestral karyotype in the light of new painting data. We show that intrachromosomal rearrangements in autosomes of Cervidae are more frequent than previously thought: at least 13 inversions in evolutionary breakpoint regions were detected.
Assuntos
Cervos , Cervo Muntjac , Animais , Bovinos/genética , Feminino , Cervo Muntjac/genética , Cervos/genética , Cariotipagem , Cariótipo , Coloração Cromossômica , Aberrações Cromossômicas , Evolução MolecularRESUMO
Glacial and interglacial periods throughout the Pleistocene have been substantial drivers of change in species distributions. Earlier analyses suggested that modern grey wolves (Canis lupus) trace their origin to a single Late Pleistocene Beringian population that expanded east and westwards, starting c. 25,000 years ago (ya). Here, we examined the demographic and phylogeographic histories of extant populations around the Bering Strait with wolves from two inland regions of the Russian Far East (RFE) and one coastal and two inland regions of North-western North America (NNA), genotyped for 91,327 single nucleotide polymorphisms. Our results indicated that RFE and NNA wolves had a common ancestry until c. 34,400 ya, suggesting that these populations started to diverge before the previously proposed expansion out of Beringia. Coastal and inland NNA populations diverged c. 16,000 ya, concordant with the minimum proposed date for the ecological viability of the migration route along the Pacific Northwest coast. Demographic reconstructions for inland RFE and NNA populations reveal spatial and temporal synchrony, with large historical effective population sizes that declined throughout the Pleistocene, possibly reflecting the influence of broadscale climatic changes across continents. In contrast, coastal NNA wolves displayed a consistently lower effective population size than the inland populations. Differences between the demographic history of inland and coastal wolves may have been driven by multiple ecological factors, including historical gene flow patterns, natural landscape fragmentation, and more recent anthropogenic disturbance.
Assuntos
Lobos , Animais , Evolução Biológica , DNA Mitocondrial/genética , Demografia , Fluxo Gênico , Filogenia , Filogeografia , Lobos/genéticaRESUMO
Carnivores tend to exhibit a lack of (or less pronounced) genetic structure at continental scales in both a geographic and temporal sense and this can confound the identification of post-glacial colonization patterns in this group. In this study we used genome-wide data (using genotyping by sequencing [GBS]) to reconstruct the phylogeographic history of a widespread carnivore, the red fox (Vulpes vulpes), by investigating broad-scale patterns of genomic variation, differentiation and admixture amongst contemporary populations in Europe. Using 15,003 single nucleotide polymorphisms (SNPs) from 524 individuals allowed us to identify the importance of refugial regions for the red fox in terms of endemism (e.g., Iberia). In addition, we tested multiple post-glacial recolonization scenarios of previously glaciated regions during the Last Glacial Maximum using an Approximate Bayesian Computation (ABC) approach that were unresolved from previous studies. This allowed us to identify the role of admixture from multiple source population post-Younger Dryas in the case of Scandinavia and ancient land-bridges in the colonization of the British Isles. A natural colonization of Ireland was deemed more likely than an ancient human-mediated introduction as has previously been proposed and potentially points to a larger mammalian community on the island in the early post-glacial period. Using genome-wide data has allowed us to tease apart broad-scale patterns of structure and diversity in a widespread carnivore in Europe that was not evident from using more limited marker sets and provides a foundation for next-generation phylogeographic studies in other non-model species.
Assuntos
Raposas , Variação Genética , Animais , Teorema de Bayes , Europa (Continente) , Raposas/genética , Humanos , Filogenia , FilogeografiaRESUMO
Although a large part of the global domestic dog population is free-ranging and free-breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and the indigenous status of FBDs in Asia is still uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent the earliest branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia.
Assuntos
Evolução Biológica , Cães/genética , Animais , Ásia , Cães/classificação , Europa (Continente) , Variação Genética , Genética Populacional , Estudo de Associação Genômica Ampla , Filogeografia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Two sets of commercially available single nucleotide polymorphisms (SNPs) developed for cattle (BovineSNP50 BeadChip) and sheep (OvineSNP50 BeadChip) have been trialed for whole-genome analysis of 4 female samples of Rangifer tarandus inhabiting Russia. We found out that 43.0% of bovine and 47.0% of Ovine SNPs could be genotyped, while only 5.3% and 2.03% of them were respectively polymorphic. The scored and the polymorphic SNPs were identified on each bovine and each ovine chromosome, but their distribution was not unique. The maximal value of runs of homozygosity (ROH) was 30.93Mb (for SNPs corresponding to bovine chromosome 8) and 80.32Mb (for SNPs corresponding to ovine chromosome 7). Thus, the SNP chips developed for bovine and ovine species can be used as a powerful tool for genome analysis in reindeer R. tarandus.
Assuntos
Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Rena/genética , Animais , Bovinos , Técnicas de Genotipagem , Ovinos , Especificidade da EspécieRESUMO
Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.
RESUMO
Currently, the intraspecific taxonomy of snow sheep (Ovis nivicola) is controversial and needs to be specified using DNA molecular genetic markers. In our previous work using whole-genome single nucleotide polymorphism (SNP) analysis, we found that the population inhabiting Kharaulakh Ridge was genetically different from the other populations of Yakut subspecies to which it was usually referred. Here, our study was aimed at the clarification of taxonomic status of Kharaulakh snow sheep using mitochondrial cytochrome b gene. A total of 87 specimens from five different geographic locations of Yakut snow sheep as well as 20 specimens of other recognized subspecies were included in this study. We identified 19 haplotypes, two of which belonged to the population from Kharaulakh Ridge. Median-joining network and Bayesian tree analyses revealed that Kharaulakh population clustered separately from all the other Yakut snow sheep. The divergence time between Kharaulakh population and Yakut snow sheep was estimated as 0.48 ± 0.19 MYA. Thus, the study of the mtDNA cytb sequences confirmed the results of genome-wide SNP analysis. Taking into account the high degree of divergence of Kharaulakh snow sheep from other groups, identified by both nuclear and mitochondrial DNA markers, we propose to classify the Kharaulakh population as a separate subspecies.
RESUMO
In this study, we present an assessment of the evolutionary history and phylogenetic relationships of Asian mountain voles of the subgenus Aschizomys, genus Alticola, based on extensive sampling and phylogenetic analyses of data from mitochondrial and nuclear markers. Two species of this subgenus are widespread in the mountain areas of north-eastern Asia. However, both their distribution and taxonomic borders remained questionable for more than 100 years. Our study showed discordance in the phylogenetic patterns between nuclear and mtDNA markers. We found that mtDNA in A. lemminus is paraphyletic relative to A. macrotis, but nuclear markers demonstrated reciprocal monophyly. According to species distribution modeling, ranges of A. macrotis and A. lemminus experienced a secondary contact during the Last Glacial Maximum (approximately 22 kyr BP), and thus a hybridization event seems plausible during that period. Species tree analyses recovered a sister group relationship between the two species of the Aschizomys subgenus, with an estimated divergence date of around 0.8 Ma. Our results provided good support for currently recognized subspecies within both A. macrotis and A. lemminus based on mitochondrial and nuclear datasets. A new, yet undescribed form, supposedly of a subspecific status within A. lemminus, was found in the Bureinskiy Range in the Khabarovsk area. This finding expands the current species distribution range further to the southeast.
Assuntos
Arvicolinae/genética , Evolução Biológica , DNA/análise , Animais , Núcleo Celular/genética , DNA Mitocondrial/análise , Marcadores Genéticos , Federação RussaRESUMO
The evolutionary relationships between extinct and extant lineages provide important insight into species' response to environmental change. The grey wolf is among the few Holarctic large carnivores that survived the Late Pleistocene megafaunal extinctions, responding to that period's profound environmental changes with loss of distinct lineages and phylogeographic shifts, and undergoing domestication. We reconstructed global genome-wide phylogeographic patterns in modern wolves, including previously underrepresented Siberian wolves, and assessed their evolutionary relationships with a previously genotyped wolf from Taimyr, Siberia, dated at 35 Kya. The inferred phylogeographic structure was affected by admixture with dogs, coyotes and golden jackals, stressing the importance of accounting for this process in phylogeographic studies. The Taimyr lineage was distinct from modern Siberian wolves and constituted a sister lineage of modern Eurasian wolves and domestic dogs, with an ambiguous position relative to North American wolves. We detected gene flow from the Taimyr lineage to Arctic dog breeds, but population clustering methods indicated closer similarity of the Taimyr wolf to modern wolves than dogs, implying complex post-divergence relationships among these lineages. Our study shows that introgression from ecologically diverse con-specific and con-generic populations was common in wolves' evolutionary history, and could have facilitated their adaptation to environmental change.
Assuntos
Sequenciamento Completo do Genoma/veterinária , Lobos/classificação , Lobos/genética , Animais , Regiões Árticas , Bases de Dados Genéticas , Evolução Molecular , Fluxo Gênico , Desequilíbrio de Ligação , Filogenia , Filogeografia , SibériaRESUMO
Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge-Tiksi Bay (TIK, n = 22), Orulgan Ridge (ORU, n = 22), the central part of Verkhoyansk Range (VER, n = 15), Suntar-Khayata Ridge (SKH, n = 13), and Momsky Ridge (MOM, n = 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified K = 2 as the most likely number of ancestral populations. A Neighbor-Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population-TIK, and maximum values were observed in the most southern population-SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.