Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 386(5): 428-436, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35108469

RESUMO

BACKGROUND: It has been hypothesized that in high-transmission settings, malaria control in early childhood (<5 years of age) might delay the acquisition of functional immunity and shift child deaths from younger to older ages. METHODS: We used data from a 22-year prospective cohort study in rural southern Tanzania to estimate the association between early-life use of treated nets and survival to adulthood. All the children born between January 1, 1998, and August 30, 2000, in the study area were invited to enroll in a longitudinal study from 1998 through 2003. Adult survival outcomes were verified in 2019 through community outreach and mobile telephones. We used Cox proportional-hazards models to estimate the association between the use of treated nets in early childhood and survival to adulthood, adjusting for potential confounders. RESULTS: A total of 6706 children were enrolled. In 2019, we verified information on the vital status of 5983 participants (89%). According to reports of early-life community outreach visits, approximately one quarter of children never slept under a treated net, one half slept under a treated net some of the time, and the remaining quarter always slept under a treated net. Participants who were reported to have used treated nets at half the early-life visits or more had a hazard ratio for death of 0.57 (95% confidence interval [CI], 0.45 to 0.72) as compared with those who were reported to have used treated nets at less than half the visits. The corresponding hazard ratio between 5 years of age and adulthood was 0.93 (95% CI, 0.58 to 1.49). CONCLUSIONS: In this long-term study of early-life malaria control in a high-transmission setting, the survival benefit from early-life use of treated nets persisted to adulthood. (Funded by the Eckenstein-Geigy Professorship and others.).


Assuntos
Inseticidas , Malária/prevenção & controle , Mosquiteiros , Estudos de Coortes , Feminino , Humanos , Lactente , Malária/mortalidade , Masculino , Análise de Sobrevida , Tanzânia/epidemiologia
2.
Nature ; 568(7752): 391-394, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918405

RESUMO

Access to adequate housing is a fundamental human right, essential to human security, nutrition and health, and a core objective of the United Nations Sustainable Development Goals1,2. Globally, the housing need is most acute in Africa, where the population will more than double by 2050. However, existing data on housing quality across Africa are limited primarily to urban areas and are mostly recorded at the national level. Here we quantify changes in housing in sub-Saharan Africa from 2000 to 2015 by combining national survey data within a geostatistical framework. We show a marked transformation of housing in urban and rural sub-Saharan Africa between 2000 and 2015, with the prevalence of improved housing (with improved water and sanitation, sufficient living area and durable construction) doubling from 11% (95% confidence interval, 10-12%) to 23% (21-25%). However, 53 (50-57) million urban Africans (47% (44-50%) of the urban population analysed) were living in unimproved housing in 2015. We provide high-resolution, standardized estimates of housing conditions across sub-Saharan Africa. Our maps provide a baseline for measuring change and a mechanism to guide interventions during the era of the Sustainable Development Goals.


Assuntos
Mapeamento Geográfico , Habitação/estatística & dados numéricos , África Subsaariana , Escolaridade , Características da Família , Habitação/economia , Habitação/provisão & distribuição , Fatores Socioeconômicos , Desenvolvimento Sustentável/economia
3.
Malar J ; 23(1): 188, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880870

RESUMO

BACKGROUND: Effective testing for malaria, including the detection of infections at very low densities, is vital for the successful elimination of the disease. Unfortunately, existing methods are either inexpensive but poorly sensitive or sensitive but costly. Recent studies have shown that mid-infrared spectroscopy coupled with machine learning (MIRs-ML) has potential for rapidly detecting malaria infections but requires further evaluation on diverse samples representative of natural infections in endemic areas. The aim of this study was, therefore, to demonstrate a simple AI-powered, reagent-free, and user-friendly approach that uses mid-infrared spectra from dried blood spots to accurately detect malaria infections across varying parasite densities and anaemic conditions. METHODS: Plasmodium falciparum strains NF54 and FCR3 were cultured and mixed with blood from 70 malaria-free individuals to create various malaria parasitaemia and anaemic conditions. Blood dilutions produced three haematocrit ratios (50%, 25%, 12.5%) and five parasitaemia levels (6%, 0.1%, 0.002%, 0.00003%, 0%). Dried blood spots were prepared on Whatman™ filter papers and scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) for machine-learning analysis. Three classifiers were trained on an 80%/20% split of 4655 spectra: (I) high contrast (6% parasitaemia vs. negative), (II) low contrast (0.00003% vs. negative) and (III) all concentrations (all positive levels vs. negative). The classifiers were validated with unseen datasets to detect malaria at various parasitaemia levels and anaemic conditions. Additionally, these classifiers were tested on samples from a population survey in malaria-endemic villages of southeastern Tanzania. RESULTS: The AI classifiers attained over 90% accuracy in detecting malaria infections as low as one parasite per microlitre of blood, a sensitivity unattainable by conventional RDTs and microscopy. These laboratory-developed classifiers seamlessly transitioned to field applicability, achieving over 80% accuracy in predicting natural P. falciparum infections in blood samples collected during the field survey. Crucially, the performance remained unaffected by various levels of anaemia, a common complication in malaria patients. CONCLUSION: These findings suggest that the AI-driven mid-infrared spectroscopy approach holds promise as a simplified, sensitive and cost-effective method for malaria screening, consistently performing well despite variations in parasite densities and anaemic conditions. The technique simply involves scanning dried blood spots with a desktop mid-infrared scanner and analysing the spectra using pre-trained AI classifiers, making it readily adaptable to field conditions in low-resource settings. In this study, the approach was successfully adapted to field use, effectively predicting natural malaria infections in blood samples from a population-level survey in Tanzania. With additional field trials and validation, this technique could significantly enhance malaria surveillance and contribute to accelerating malaria elimination efforts.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação , Parasitemia/diagnóstico , Parasitemia/parasitologia , Anemia/diagnóstico , Anemia/sangue , Anemia/parasitologia , Espectrofotometria Infravermelho/métodos , Aprendizado de Máquina , Carga Parasitária , Adulto , Inteligência Artificial , Sensibilidade e Especificidade , Feminino , Adulto Jovem , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adolescente , Masculino , Pessoa de Meia-Idade , Programas de Rastreamento/métodos
4.
Malar J ; 23(1): 86, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532415

RESUMO

BACKGROUND: The degree to which Anopheles mosquitoes prefer biting humans over other vertebrate hosts, i.e. the human blood index (HBI), is a crucial parameter for assessing malaria transmission risk. However, existing techniques for identifying mosquito blood meals are demanding in terms of time and effort, involve costly reagents, and are prone to inaccuracies due to factors such as cross-reactivity with other antigens or partially digested blood meals in the mosquito gut. This study demonstrates the first field application of mid-infrared spectroscopy and machine learning (MIRS-ML), to rapidly assess the blood-feeding histories of malaria vectors, with direct comparison to PCR assays. METHODS AND RESULTS: Female Anopheles funestus mosquitoes (N = 1854) were collected from rural Tanzania and desiccated then scanned with an attenuated total reflectance Fourier-transform Infrared (ATR-FTIR) spectrometer. Blood meals were confirmed by PCR, establishing the 'ground truth' for machine learning algorithms. Logistic regression and multi-layer perceptron classifiers were employed to identify blood meal sources, achieving accuracies of 88%-90%, respectively, as well as HBI estimates aligning well with the PCR-based standard HBI. CONCLUSIONS: This research provides evidence of MIRS-ML effectiveness in classifying blood meals in wild Anopheles funestus, as a potential complementary surveillance tool in settings where conventional molecular techniques are impractical. The cost-effectiveness, simplicity, and scalability of MIRS-ML, along with its generalizability, outweigh minor gaps in HBI estimation. Since this approach has already been demonstrated for measuring other entomological and parasitological indicators of malaria, the validation in this study broadens its range of use cases, positioning it as an integrated system for estimating pathogen transmission risk and evaluating the impact of interventions.


Assuntos
Anopheles , Malária , Animais , Humanos , Feminino , Mosquitos Vetores , Malária/epidemiologia , Aprendizado de Máquina , Espectrofotometria Infravermelho , Comportamento Alimentar
5.
Med Vet Entomol ; 38(2): 119-137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38303659

RESUMO

There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.


Des progrès importants ont été réalisés dans le contrôle du paludisme au cours des deux dernières décennies, qui se traduisent par une baisse de la mortalité et de la morbidité. Cependant, ces gains sont compromis par la résistance aux insecticides, ce qui a un impact négatif sur les interventions de base, telles que les moustiquaires imprégnées d'insecticides et la pulvérisation intradomicilliare (PID). Alors que la plupart des efforts de contrôle et de recherche sur le paludisme sont toujours axés sur les moustiques du complexes Anopheles gambiae, Anopheles funestus reste un vecteur important dans de nombreux pays et, dans certains cas, contribue à la majeure partie de la transmission locale. Au moment où certains pays se dirigent vers l'élimination du paludisme, il serait important de prendre en considération toutes les espèces vectrices dominantes, y compris An. funestus. L'objectif de cette revue est de compiler et de discuter des informations liées à la résistance des populations d'An. funestus aux insecticides et les mécanismes impliqués à travers l'Afrique, en mettant l'accent sur les sous espèces et leurs profils de résistance en relation avec les objectifs d'élimination du paludisme. Les données sur la résistance aux insecticides chez An. funestus vecteurs du paludisme en Afrique ont été extraites d'études publiées dans des bases de données bibliographiques comme Google Scholar et PubMed. Les articles publiés entre 2000 et mai 2023, rapportant la résistance de An. funestus aux insecticides et les mécanismes associés ont été inclus. Ceux portant uniquement sur la bionomie ont été exclus. Au total 174 articles portant sur la variation spatiale de la résistance des espèces du groupe An. funestus aux insecticides répondaient aux critères de sélection. De ces analyses, il ressort qu'An. funestus était de plus en plus résistant aux quatre classes d'insecticides recommandées par l'Organisation Mondiale de la Santé (OMS) pour le contrôle des vecteurs du paludisme ce qui semble réduire l'efficacité des méthodes de contrôle des vecteurs, en particulier les moustiquaires imprégnées d'insecticide et la pulvérisation intradomiciliaire. avec des variations en fonction des pays. Les mécanismes de résistance aux insecticides de type biochimique liée aux enzymes de détoxification (P450S et GST) ont été largement rapportés chez An. funestus. De nombreux gènes P450 associés à la résistance métabolique ont été mis en évidence chez An. funestus collecté sur le terrain. Cependant, An. funestus en Afrique reste sensible à d'autres classes d'insecticides, telles que les organophosphorés et les néonicotinoïdes. La résistance aux insecticides. Cette revue met en évidence la résistance croissante aux insecticides chez les moustiques du groupe Funestus, un vecteur important du paludisme en Afrique, posant ainsi un défi important aux efforts de contrôle du paludisme. Tandis que An. funestus a montré une résistance aux classes d'insecticide recommandées, notamment les pyréthroïdes et, dans certains cas, les organochlorés et les carbamates, il reste sensible à d'autres classes d'insecticides tels que les organophosphorés et les néonicotinoïdes, offrant des options alternatives potentielles de contrôle des vecteurs. L'étude souligne la nécessité d'interventions ciblées qui considèrent la structure de la population et la distribution géographique d'An. funestus, y compris ses sous espèces et leurs profils de résistance aux insecticides, pour atteindre efficacement les objectifs d'élimination du paludisme.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Malária , Mosquitos Vetores , Animais , Resistência a Inseticidas/genética , Anopheles/efeitos dos fármacos , Anopheles/genética , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , África , Malária/transmissão , Malária/prevenção & controle , Inseticidas/farmacologia , Distribuição Animal
6.
Int J Health Geogr ; 23(1): 13, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764024

RESUMO

BACKGROUND: In the near future, the incidence of mosquito-borne diseases may expand to new sites due to changes in temperature and rainfall patterns caused by climate change. Therefore, there is a need to use recent technological advances to improve vector surveillance methodologies. Unoccupied Aerial Vehicles (UAVs), often called drones, have been used to collect high-resolution imagery to map detailed information on mosquito habitats and direct control measures to specific areas. Supervised classification approaches have been largely used to automatically detect vector habitats. However, manual data labelling for model training limits their use for rapid responses. Open-source foundation models such as the Meta AI Segment Anything Model (SAM) can facilitate the manual digitalization of high-resolution images. This pre-trained model can assist in extracting features of interest in a diverse range of images. Here, we evaluated the performance of SAM through the Samgeo package, a Python-based wrapper for geospatial data, as it has not been applied to analyse remote sensing images for epidemiological studies. RESULTS: We tested the identification of two land cover classes of interest: water bodies and human settlements, using different UAV acquired imagery across five malaria-endemic areas in Africa, South America, and Southeast Asia. We employed manually placed point prompts and text prompts associated with specific classes of interest to guide the image segmentation and assessed the performance in the different geographic contexts. An average Dice coefficient value of 0.67 was obtained for buildings segmentation and 0.73 for water bodies using point prompts. Regarding the use of text prompts, the highest Dice coefficient value reached 0.72 for buildings and 0.70 for water bodies. Nevertheless, the performance was closely dependent on each object, landscape characteristics and selected words, resulting in varying performance. CONCLUSIONS: Recent models such as SAM can potentially assist manual digitalization of imagery by vector control programs, quickly identifying key features when surveying an area of interest. However, accurate segmentation still requires user-provided manual prompts and corrections to obtain precise segmentation. Further evaluations are necessary, especially for applications in rural areas.


Assuntos
Mudança Climática , Humanos , Animais , Malária/epidemiologia , Mosquitos Vetores , Tecnologia de Sensoriamento Remoto/métodos , Sistemas de Informação Geográfica , Processamento de Imagem Assistida por Computador/métodos
7.
BMC Bioinformatics ; 24(1): 11, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624386

RESUMO

BACKGROUND: Old mosquitoes are more likely to transmit malaria than young ones. Therefore, accurate prediction of mosquito population age can drastically improve the evaluation of mosquito-targeted interventions. However, standard methods for age-grading mosquitoes are laborious and costly. We have shown that Mid-infrared spectroscopy (MIRS) can be used to detect age-specific patterns in mosquito cuticles and thus can be used to train age-grading machine learning models. However, these models tend to transfer poorly across populations. Here, we investigate whether applying dimensionality reduction and transfer learning to MIRS data can improve the transferability of MIRS-based predictions for mosquito ages. METHODS: We reared adults of the malaria vector Anopheles arabiensis in two insectaries. The heads and thoraces of female mosquitoes were scanned using an attenuated total reflection-Fourier transform infrared spectrometer, which were grouped into two different age classes. The dimensionality of the spectra data was reduced using unsupervised principal component analysis or t-distributed stochastic neighbour embedding, and then used to train deep learning and standard machine learning classifiers. Transfer learning was also evaluated to improve transferability of the models when predicting mosquito age classes from new populations. RESULTS: Model accuracies for predicting the age of mosquitoes from the same population as the training samples reached 99% for deep learning and 92% for standard machine learning. However, these models did not generalise to a different population, achieving only 46% and 48% accuracy for deep learning and standard machine learning, respectively. Dimensionality reduction did not improve model generalizability but reduced computational time. Transfer learning by updating pre-trained models with 2% of mosquitoes from the alternate population improved performance to ~ 98% accuracy for predicting mosquito age classes in the alternative population. CONCLUSION: Combining dimensionality reduction and transfer learning can reduce computational costs and improve the transferability of both deep learning and standard machine learning models for predicting the age of mosquitoes. Future studies should investigate the optimal quantities and diversity of training data necessary for transfer learning and the implications for broader generalisability to unseen datasets.


Assuntos
Anopheles , Malária , Animais , Adulto , Feminino , Humanos , Mosquitos Vetores , Aprendizado de Máquina
8.
Malar J ; 22(1): 134, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098566

RESUMO

BACKGROUND: The effectiveness of insecticide-treated nets (ITNs) in preventing malaria in young children is well established. However, the long-term effects of early childhood ITN use on educational outcomes, fertility, and marriage in early adulthood are not well understood. METHODS: This study uses 22 years of longitudinal data from rural Tanzania to investigate the associations between early life ITN use and educational attainment, fertility and marriage in early adulthood. Unadjusted and adjusted logistic regression models were used to estimate the associations between early life ITN use and early adult outcomes (education, childbearing, and marriage), controlling for potential confounders, such as parental education, household asset quintiles, and year of birth. Analyses were conducted separately for men and women. RESULTS: A total of 6706 participants born between 1998 and 2000 were enrolled in the study between 1998 and 2003. By 2019 a total of 604 had died and a further 723 could not be found, leaving 5379 participants who were interviewed, among whom complete data were available for 5216. Among women, sleeping under a treated net at least half of the time during early childhood ["high ITN use"] was associated with a 13% increase in the odds of completing primary school (adjusted odds ratio (aOR) 1.13 [0.85, 1.50]) and with a 40% increase in the odds of completing secondary school (aOR 1.40 [1.11, 1.76]) compared with women sleeping less frequently under ITNs in early life (< age 5 years). Among men, high ITN use was associated with a 50% increase in the odds of completing primary school (aOR 1.50 [1.18, 1.92]) and a 56% increase in the odds of completing secondary school (aOR 1.56 [1.16, 2.08]) compared to men with low ITN use in early life. Weaker associations were found between ITN use in early life and both adolescent childbearing (aOR 0.91 [0.75, 1.10]) and early marriage (aOR 0.86 [0.69, 1.05]). CONCLUSION: This study found that early life use of ITNs was strongly associated with increased school completion in both men and women. More marginal associations were found between early-life ITN use and both marriage and child-bearing in early adulthood. ITN use during early childhood may have long-term positive effects on educational attainment in Tanzania. However, further research is needed to understand the mechanisms behind these associations and to explore the broader impacts of ITN use on other aspects of early adult life.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Adulto , Masculino , Adolescente , Humanos , Pré-Escolar , Feminino , Tanzânia , Casamento , Estudos Prospectivos , Escolaridade , Controle de Mosquitos
9.
Malar J ; 22(1): 230, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553665

RESUMO

Anopheles mosquitoes present a major public health challenge in sub-Saharan Africa; notably, as vectors of malaria that kill over half a million people annually. In parts of the east and southern Africa region, one species in the Funestus group, Anopheles funestus, has established itself as an exceptionally dominant vector in some areas, it is responsible for more than 90% of all malaria transmission events. However, compared to other malaria vectors, the species is far less studied, partly due to difficulties in laboratory colonization and the unresolved aspects of its taxonomy and systematics. Control of An. funestus is also increasingly difficult because it has developed widespread resistance to public health insecticides. Fortunately, recent advances in molecular techniques are enabling greater insights into species identity, gene flow patterns, population structure, and the spread of resistance in mosquitoes. These advances and their potential applications are reviewed with a focus on four research themes relevant to the biology and control of An. funestus in Africa, namely: (i) the taxonomic characterization of different vector species within the Funestus group and their role in malaria transmission; (ii) insecticide resistance profile; (iii) population genetic diversity and gene flow, and (iv) applications of genetic technologies for surveillance and control. The research gaps and opportunities identified in this review will provide a basis for improving the surveillance and control of An. funestus and malaria transmission in Africa.


Assuntos
Anopheles , Inseticidas , Malária , Humanos , Animais , Malária/epidemiologia , Mosquitos Vetores/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética , África Austral
10.
Malar J ; 22(1): 190, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344867

RESUMO

BACKGROUND: Attractive targeted sugar baits (ATSBs) control sugar-feeding mosquitoes with oral toxicants, and may effectively complement core malaria interventions, such as insecticide-treated nets even where pyrethroid-resistance is widespread. The technology is particularly efficacious in arid and semi-arid areas. However, their performance remains poorly-understood in tropical areas with year-round malaria transmission, and where the abundant vegetation constitutes competitive sugar sources for mosquitoes. This study compared the efficacies of ATSBs (active ingredient: 2% boric acid) in controlled settings with different vegetation densities. METHODS: Potted mosquito-friendly plants were introduced inside semi-field chambers (9.6 m by 9.6 m) to simulate densely-vegetated, sparsely-vegetated, and bare sites without any vegetation (two chambers/category). All chambers had volunteer-occupied huts. Laboratory-reared Anopheles arabiensis were released nightly (200/chamber) and host-seeking females recaptured using human landing catches outdoors (8.00 p.m.-9.00 p.m.) and CDC-light traps indoors (9.00 p.m.-6.00 a.m.). Additionally, resting mosquitoes were collected indoors and outdoors each morning using Prokopack aspirators. The experiments included a "before-and-after" set-up (with pre-ATSBs, ATSBs and post-ATSBs phases per chamber), and a "treatment vs. control" set-up (where similar chambers had ATSBs or no ATSBs). The experiments lasted 84 trap-nights. RESULTS: In the initial tests when all chambers had no vegetation, the ATSBs reduced outdoor-biting by 69.7%, indoor-biting by 79.8% and resting mosquitoes by 92.8%. In tests evaluating impact of vegetation, the efficacy of ATSBs against host-seeking mosquitoes was high in bare chambers (outdoors: 64.1% reduction; indoors: 46.8%) but modest or low in sparsely-vegetated (outdoors: 34.5%; indoors: 26.2%) and densely-vegetated chambers (outdoors: 25.4%; indoors: 16.1%). Against resting mosquitoes, the ATSBs performed modestly across settings (non-vegetated chambers: 37.5% outdoors and 38.7% indoors; sparsely-vegetated: 42.9% outdoors and 37.5% indoors; densely-vegetated: 45.5% outdoors and 37.5% indoors). Vegetation significantly reduced the ATSBs efficacies against outdoor-biting and indoor-biting mosquitoes but not resting mosquitoes. CONCLUSION: While vegetation can influence the performance of ATSBs, the devices remain modestly efficacious in both sparsely-vegetated and densely-vegetated settings. Higher efficacies may occur in places with minimal or completely no vegetation, but such environments are naturally unlikely to sustain Anopheles populations or malaria transmission in the first place. Field studies therefore remain necessary to validate the efficacies of ATSBs in the tropics.


Assuntos
Anopheles , Malária , Animais , Feminino , Humanos , Malária/prevenção & controle , Açúcares , Mosquitos Vetores , Controle de Mosquitos
11.
Malar J ; 22(1): 69, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849883

RESUMO

BACKGROUND: Malaria disproportionately affects low-income households in rural communities where poor housing is common. Despite evidence that well-constructed and mosquito-proofed houses can reduce malaria risk, housing improvement is rarely included in malaria control toolboxes. This study assessed the need, magnitude, and opportunities for housing improvement to control malaria in rural Tanzania. METHODS: A mixed-methods study was conducted in 19 villages across four district councils in southern Tanzania. A structured survey was administered to 1292 community members to assess need, perceptions, and opportunities for housing improvement for malaria control. Direct observations of 802 houses and surrounding environments were done to identify the actual needs and opportunities, and to validate the survey findings. A market survey was done to assess availability and cost of resources and services necessary for mosquito-proofing homes. Focus group discussions were conducted with key stakeholders to explore insights on the potential and challenges of housing improvement as a malaria intervention. RESULTS: Compared to other methods for malaria control, housing improvement was among the best understood and most preferred by community members. Of the 735 survey respondents who needed housing improvements, a majority needed window screening (91.1%), repairs of holes in walls (79.4%), door covers (41.6%), closing of eave spaces (31.2%) and better roofs (19.0%). Community members invested significant efforts to improve their own homes against malaria and other dangers, but these efforts were often slow and delayed due to high costs and limited household incomes. Study participants suggested several mechanisms of support to improve their homes, including government loans and subsidies. CONCLUSION: Addressing the need for housing improvement is a critical component of malaria control efforts in southern Tanzania. In this study, a majority of the community members surveyed needed modest modifications and had plans to work on those modifications. Without additional support, their efforts were however generally slow; households would take years to sufficiently mosquito-proof their houses. It is, therefore, crucial to bring together the key players across sectors to reduce barriers in malaria-proofing housing in endemic settings. These may include government subsidies or partnerships with businesses to make housing improvement more accessible and affordable to residents.


Assuntos
Culicidae , Malária , Animais , Humanos , Habitação , Tanzânia , Comércio , Malária/prevenção & controle
12.
Malar J ; 22(1): 43, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739391

RESUMO

BACKGROUND: Early-evening and outdoor-biting mosquitoes may compromise the effectiveness of frontline malaria interventions, notably insecticide-treated nets (ITNs). This study aimed to evaluate the efficacy of low-cost insecticide-treated eave ribbons and sandals as supplementary interventions against indoor-biting and outdoor-biting mosquitoes in south-eastern Tanzania, where ITNs are already widely used. METHODS: This study was conducted in three villages, with 72 households participating (24 households per village). The households were divided into four study arms and assigned: transfluthrin-treated sandals (TS), transfluthrin-treated eave ribbons (TER), a combination of TER and TS, or experimental controls. Each arm had 18 households, and all households received new ITNs. Mosquitoes were collected using double net traps (to assess outdoor biting), CDC light traps (to assess indoor biting), and Prokopack aspirators (to assess indoor resting). Protection provided by the interventions was evaluated by comparing mosquito densities between the treatment and control arms. Additional tests were done in experimental huts to assess the mortality of wild mosquitoes exposed to the treatments or controls. RESULTS: TERs reduced indoor-biting, indoor-resting and outdoor-biting Anopheles arabiensis by 60%, 73% and 41%, respectively, while TS reduced the densities by 18%, 40% and 42%, respectively. When used together, TER & TS reduced indoor-biting, indoor-resting and outdoor-biting An. arabiensis by 53%, 67% and 57%, respectively. Protection against Anopheles funestus ranged from 42 to 69% with TER and from 57 to 74% with TER & TS combined. Mortality of field-collected mosquitoes exposed to TER, TS or both interventions was 56-78% for An. arabiensis and 47-74% for An. funestus. CONCLUSION: Transfluthrin-treated eave ribbons and sandals or their combination can offer significant household-level protection against malaria vectors. Their efficacy is magnified by the transfluthrin-induced mortality, which was observed despite the prevailing pyrethroid resistance in the study area. These results suggest that TER and TS could be useful supplementary tools against residual malaria transmission in areas where ITN coverage is high but additional protection is needed against early-evening and outdoor-biting mosquitoes. Further research is needed to validate the performance of these tools in different settings, and assess their long-term effectiveness and feasibility for malaria control.


Assuntos
Anopheles , Repelentes de Insetos , Inseticidas , Malária , Animais , Humanos , Mosquitos Vetores , Tanzânia , Malária/prevenção & controle , Repelentes de Insetos/farmacologia , Controle de Mosquitos/métodos
13.
Malar J ; 22(1): 280, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735680

RESUMO

BACKGROUND: Anopheles funestus, the main malaria vector, prefer to oviposit in permanent and/or semi-permanent breeding habitats located far from human dwellings. Difficulties in identifying and accessing these habitats jeopardize the feasibility of conventional larviciding. In this way, a semi-field study was conducted to assess the potential of autodissemination of pyriproxyfen (PPF) by An. funestus for its control. METHODS: The study was conducted inside a semi-field system (SFS). Therein, two identical separate chambers, the treatment chamber with a PPF-treated clay pot (0.25 g AI), and the control chamber with an untreated clay pot. In both chambers, one artificial breeding habitat made of a plastic basin with one litre of water was provided. Three hundred blood-fed female An. funestus aged 5-9 days were held inside untreated and treated clay pots for 30 min and 48 h before being released for oviposition. The impact of PPF on adult emergence, fecundity, and fertility through autodissemination and sterilization effects were assessed by comparing the treatment with its appropriate control group. RESULTS: Mean (95% CI) percentage of adult emergence was 15.5% (14.9-16.1%) and 70.3% (69-71%) in the PPF and control chamber for females exposed for 30 min (p < 0.001); and 19% (12-28%) and 95% (88-98%) in the PPF and control chamber for females exposed for 48 h (p < 0.001) respectively. Eggs laid by exposed mosquitoes and their hatch rate were significantly reduced compared to unexposed mosquitoes (p < 0.001). Approximately, 90% of females exposed for 48 h retained abnormal ovarian follicles and only 42% in females exposed for 30 min. CONCLUSION: The study demonstrated sterilization and adult emergence inhibition via autodissemination of PPF by An. funestus. Also, it offers proof that sterilized An. funestus can transfer PPF to prevent adult emergence at breeding habitats. These findings warrant further assessment of the autodissemination of PPF in controlling wild population of An. funestus, and highlights its potential for complementing long-lasting insecticidal nets.


Assuntos
Anopheles , Malária , Adulto , Humanos , Animais , Feminino , Argila , Mosquitos Vetores
14.
Malar J ; 22(1): 384, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129897

RESUMO

BACKGROUND: Gene drive modified mosquitoes (GDMMs) have the potential to address Africa's persistent malaria problem, but are still in early stages of development and testing. Continuous engagement of African stakeholders is crucial for successful evaluation and implementation of these technologies. The aim of this multi-country study was, therefore, to explore the insights and recommendations of key stakeholders across Africa on the potential of GDMMs for malaria control and elimination in the continent. METHODS: A concurrent mixed-methods study design was used, involving a structured survey administered to 180 stakeholders in 25 countries in sub-Saharan Africa, followed by 18 in-depth discussions with selected groups and individuals. Stakeholders were drawn from academia, research and regulatory institutions, government ministries of health and environment, media and advocacy groups. Thematic content analysis was used to identify key topics from the in-depth discussions, and descriptive analysis was done to summarize information from the survey data. RESULTS: Despite high levels of awareness of GDMMs among the stakeholders (76.7%), there was a relatively low-level of understanding of their key attributes and potential for malaria control (28.3%). When more information about GDMMs was provided to the stakeholders, they readily discussed their insights and concerns, and offered several recommendations to ensure successful research and implementation of the technology. These included: (i) increasing relevant technical expertise within Africa, (ii) generating local evidence on safety, applicability, and effectiveness of GDMMs, and (iii) developing country-specific regulations for safe and effective governance of GDMMs. A majority of the respondents (92.9%) stated that they would support field trials or implementation of GDMMs in their respective countries. This study also identified significant misconceptions regarding the phase of GDMM testing in Africa, as several participants incorrectly asserted that GDMMs were already present in Africa, either within laboratories or released into the field. CONCLUSION: Incorporating views and recommendations of African stakeholders in the ongoing research and development of GDMMs is crucial for instilling stakeholder confidence on their potential application. These findings will enable improved planning for GDMMs in Africa as well as improved target product profiles for the technologies to maximize their potential for solving Africa's enduring malaria challenge.


Assuntos
Culicidae , Tecnologia de Impulso Genético , Malária , Animais , Humanos , Tecnologia de Impulso Genético/métodos , África Subsaariana , Governo , Malária/prevenção & controle
15.
Malar J ; 22(1): 346, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950315

RESUMO

Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements-and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.


Assuntos
Culicidae , Malária , Animais , Humanos , Inteligência Artificial , Lacunas de Evidências , Malária/epidemiologia , Mosquitos Vetores , Espectrofotometria Infravermelho/métodos
16.
Malar J ; 21(1): 156, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641958

RESUMO

There are increasing reports of the Asian malaria mosquito, Anopheles stephensi invading and spreading in Eastern Africa. We discuss the importance of these invasions in the context of broader challenges facing malaria control in Africa and argue against addressing it as an isolated problem. Anopheles stephensi is only one of multiple biological threats facing malaria control in the region-and is itself an indication of wide-ranging weaknesses in vector surveillance and control programs. Expanded investigations are needed in both urban and rural areas, especially in countries serviced by the Indian Ocean trade routes, to establish the full extent and future trajectories of the problem. More importantly, instead of tackling this vector species as a stand-alone threat, affected countries should adopt more integrated and multi-sectorial initiatives that can sustainably drive and keep out malaria.


Assuntos
Anopheles , Malária , África , África Oriental , Animais , Anopheles/fisiologia , Malária/epidemiologia , Mosquitos Vetores/fisiologia
17.
Malar J ; 21(1): 154, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624483

RESUMO

The World Malaria Report, released in December 2021, reflects the unique challenges currently facing the global malaria community. The report showed the devastating toll of malaria, with an estimated 627,000 people losing their lives to the disease in 2020. The improved methodological approach used for calculating cause of death for young children revealed a systematic underestimation of disease burden over the past two decades; and that Africa has an even greater malaria crisis than previously known. While countries were able to prevent the worst-case scenarios, the disruptions due to the COVID-19 pandemic revealed how weak health systems and inadequate financing can limit the capacity of the continent to address the malaria challenge. African countries also face a convergence of biological threats that could redefine malaria control, notably widespread pyrethroid resistance and emerging resistance to artemisinin. Despite these challenges, there is cause for optimism in lessons learned from the COVID-19 pandemic, recent acceleration of cutting edge research and development, and new partnerships that encourage leadership from and ownership by affected countries. This article presents key insights from the 2021 World Malaria Report and reflections on the future trajectories: it was informed by an in-depth discussion with leading malaria experts from the World Health Organization (WHO), the Bill & Melinda Gates Foundation, and the U.S. President's Malaria Initiative (PMI). The discussion took place during the 34th edition of the Ifakara Master Classes, held virtually on December 15th, 2021.


Assuntos
COVID-19 , Malária , África , COVID-19/prevenção & controle , Criança , Pré-Escolar , Humanos , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Pandemias/prevenção & controle , Organização Mundial da Saúde
18.
Malar J ; 21(1): 161, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658961

RESUMO

BACKGROUND: It is often assumed that the population dynamics of the malaria vector Anopheles funestus, its role in malaria transmission and the way it responds to interventions are similar to the more elaborately characterized Anopheles gambiae. However, An. funestus has several unique ecological features that could generate distinct transmission dynamics and responsiveness to interventions. The objectives of this work were to develop a model which will: (1) reconstruct the population dynamics, survival, and fecundity of wild An. funestus populations in southern Tanzania, (2) quantify impacts of density dependence on the dynamics, and (3) assess seasonal fluctuations in An. funestus demography. Through quantifying the population dynamics of An. funestus, this model will enable analysis of how their stability and response to interventions may differ from that of An. gambiae sensu lato. METHODS: A Bayesian State Space Model (SSM) based on mosquito life history was fit to time series data on the abundance of female An. funestus sensu stricto collected over 2 years in southern Tanzania. Prior values of fitness and demography were incorporated from empirical data on larval development, adult survival and fecundity from laboratory-reared first generation progeny of wild caught An. funestus. The model was structured to allow larval and adult fitness traits to vary seasonally in response to environmental covariates (i.e. temperature and rainfall), and for density dependency in larvae. The effects of density dependence and seasonality were measured through counterfactual examination of model fit with or without these covariates. RESULTS: The model accurately reconstructed the seasonal population dynamics of An. funestus and generated biologically-plausible values of their survival larval, development and fecundity in the wild. This model suggests that An. funestus survival and fecundity annual pattern was highly variable across the year, but did not show consistent seasonal trends either rainfall or temperature. While the model fit was somewhat improved by inclusion of density dependence, this was a relatively minor effect and suggests that this process is not as important for An. funestus as it is for An. gambiae populations. CONCLUSION: The model's ability to accurately reconstruct the dynamics and demography of An. funestus could potentially be useful in simulating the response of these populations to vector control techniques deployed separately or in combination. The observed and simulated dynamics also suggests that An. funestus could be playing a role in year-round malaria transmission, with any apparent seasonality attributed to other vector species.


Assuntos
Anopheles , Malária , Animais , Anopheles/fisiologia , Teorema de Bayes , Feminino , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Dinâmica Populacional , Tanzânia
19.
Malar J ; 21(1): 158, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655190

RESUMO

The most important malaria vectors in sub-Saharan Africa are Anopheles gambiae, Anopheles arabiensis, Anopheles funestus, and Anopheles coluzzii. Of these, An. funestus presently dominates in many settings in east and southern Africa. While research on this vector species has been impeded by difficulties in creating laboratory colonies, available evidence suggests it has certain ecological vulnerabilities that could be strategically exploited to greatly reduce malaria transmission in areas where it dominates. This paper examines the major life-history traits of An. funestus, its aquatic and adult ecologies, and its responsiveness to key interventions. It then outlines a plausible strategy for reducing malaria transmission by the vector and sustaining the gains over the medium to long term. To illustrate the propositions, the article uses data from south-eastern Tanzania where An. funestus mediates over 85% of malaria transmission events and is highly resistant to key public health insecticides, notably pyrethroids. Both male and female An. funestus rest indoors and the females frequently feed on humans indoors, although moderate to high degrees of zoophagy can occur in areas with large livestock populations. There are also a few reports of outdoor-biting by the species, highlighting a broader range of behavioural phenotypes that can be considered when designing new interventions to improve vector control. In comparison to other African malaria vectors, An. funestus distinctively prefers permanent and semi-permanent aquatic habitats, including river streams, ponds, swamps, and spring-fed pools. The species is therefore well-adapted to sustain its populations even during dry months and can support year-round malaria transmission. These ecological features suggest that highly effective control of An. funestus could be achieved primarily through strategic combinations of species-targeted larval source management and high quality insecticide-based methods targeting adult mosquitoes in shelters. If done consistently, such an integrated strategy has the potential to drastically reduce local populations of An. funestus and significantly reduce malaria transmission in areas where this vector species dominates. To sustain the gains, the programmes should be complemented with gradual environmental improvements such as house modification to maintain biting exposure at a bare minimum, as well as continuous engagements of the resident communities and other stakeholders.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Vetores de Doenças , Feminino , Malária/prevenção & controle , Masculino , Mosquitos Vetores
20.
Malar J ; 21(1): 36, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123497

RESUMO

BACKGROUND: In sub-Saharan Africa, house design and ventilation affects the number of malaria mosquito vectors entering houses. This study hypothesized that indoor light from a CDC-light trap, visible from outside a hut, would increase entry of Anopheles arabiensis, an important malaria vector, and examined whether ventilation modifies this effect. METHODS: Four inhabited experimental huts, each situated within a large chamber, were used to assess how light and ventilation affect the number of hut-entering mosquitoes in Tanzania. Each night, 300 female laboratory-reared An. arabiensis were released inside each chamber for 72 nights. Nightly mosquito collections were made using light traps placed indoors. Temperature and carbon dioxide concentrations were measured using data loggers. Treatments and sleepers were rotated between huts using a randomized block design. RESULTS: When indoor light was visible outside the huts, there was an 84% increase in the odds of collecting mosquitoes indoors (Odds ratio, OR = 1.84, 95% confidence intervals, 95% CI 1.74-1.95, p < 0.001) compared with when it was not. Although the odds of collecting mosquitoes in huts with closed eaves (OR = 0.54, 95% CI 0.41-0.72, p < 0.001) was less than those with open eaves, few mosquitoes entered either type of well-ventilated hut. The odds of collecting mosquitoes was 99% less in well-ventilated huts, compared with poorly-ventilated traditional huts (OR = 0.01, 95% CI 0.01-0.03, p < 0.001). In well-ventilated huts, indoor temperatures were 1.3 °C (95% CI 0.9-1.7, p < 0.001) cooler, with lower carbon dioxide (CO2) levels (mean difference = 97 ppm, 77.8-116.2, p < 0.001) than in poorly-ventilated huts. CONCLUSION: Although light visible from outside a hut increased mosquito house entry, good natural ventilation reduces indoor carbon dioxide concentrations, a major mosquito attractant, thereby reducing mosquito-hut entry.


Assuntos
Anopheles , Malária , Animais , Feminino , Habitação , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA