Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652606

RESUMO

Bladder cancer (BC) is the tenth most frequently detected cancer in both sexes. Type-I luteinizing hormone-releasing hormone (LHRH) receptor (LHRH-R-I) is expressed not only in the pituitary, but also in several types of cancer disease. There are few data about LHRH-R-I expression in human BC. This study aimed to investigate the expression of LHRH and LHRH-R-I in the transitional cell carcinoma (TCC) type of human BC. RNA was extracted from 24 human bladder tumor specimens and three BC cell lines. RT-PCR was performed to detect mRNA for LHRH and LHRH-R-I. The protein of LHRH-R-I was further studied by immunohistochemistry (IHC), ligand competition assay, and Western Blot. PCR products of LHRH were found in 19 of 24 (79%) specimens and mRNA of LHRH-R-I was detected in 20 of 24 specimens (83%). Positive immunostaining for LHRH-R-I with different expression intensity was found in all samples examined, showing negative correlation with TCC grade. Radioligand binding studies also showed the presence of specific LHRH-R-I and high affinity binding of LHRH analogs. The high incidence of LHRH-R in BC suggests that it could serve as a molecular target for therapy of human BC with cytotoxic LHRH analogs or modern powerful antagonistic analogs of LHRH.


Assuntos
Carcinoma de Células de Transição/genética , Hormônio Liberador de Gonadotropina/genética , Receptores LHRH/genética , Neoplasias da Bexiga Urinária/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/epidemiologia , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/patologia
2.
Molecules ; 23(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949880

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, with an incidence of 4⁻5 cases per million. The prognosis of UM is very poor. In the present study, our aim was to investigate the expression of mRNA and protein for somatostatin receptor types-1, -2, -3, -4, -5 (SSTR-1⁻5) in human UM tissue samples and in OCM-1 and OCM-3 human UM cell lines by qRT-PCR, western blot and ligand competition assay. The mRNA for SSTR-2 showed markedly higher expression in UM tissues than SSTR-5. The presence of SSTRs was demonstrated in 70% of UM specimens using ligand competition assay and both human UM models displayed specific high affinity SSTRs. Among the five SSTRs, the mRNA investigated for SSTR-2 and SSTR-5 receptors was strongly expressed in both human UM cell lines, SSTR-5 showing the highest expression. The presence of the SSTR-2 and SSTR-5 receptor proteins was confirmed in both cell lines by western blot. In summary, the expression of somatostatin receptors in human UM specimens and in OCM-1 and OCM-3 human UM cell lines suggests that they could serve as a potential molecular target for therapy of UM using modern powerful cytotoxic SST analogs targeting SSTR-2 and SSTR-5 receptors.


Assuntos
Melanoma/tratamento farmacológico , Terapia de Alvo Molecular , Receptores de Somatostatina/metabolismo , Neoplasias Uveais/tratamento farmacológico , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , Neoplasias Uveais/genética , Neoplasias Uveais/patologia
3.
Mol Med ; 22: 361-379, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27257787

RESUMO

Colon cancer cells contain high levels of cystathionine-beta-synthase (CBS). Its product, hydrogen sulfide (H2S) promotes the growth and proliferation of colorectal tumor cells. In order to improve the antitumor efficacy of the prototypical CBS inhibitor aminooxyacetic acid (AOAA), we have designed and synthesized YD0171, a methyl ester derivative of AOAA. The antiproliferative effect of YD0171 exceeded the antiproliferative potency of AOAA in HCT116 human colon cancer cells. The esterase inhibitor paraoxon prevented the cellular inhibition of CBS activity by YD0171. YD0171 suppressed mitochondrial respiration and glycolytic function and induced G0/G1 arrest, but did not induce tumor cell apoptosis or necrosis. Metabolomic analysis in HCT116 cells showed that YD0171 affects multiple pathways of cell metabolism. The efficacy of YD0171 as an inhibitor of tumor growth was also tested in nude mice bearing subcutaneous HCT116 cancer cell xenografts. Animals were treated via subcutaneous injection of vehicle, AOAA (1, 3 or 9 mg/kg/day) or YD0171 (0.1, 0.5 or 1 mg/kg/day) for 3 weeks. Tumor growth was significantly reduced by 9 mg/kg/day AOAA, but not at the lower doses. YD0171 was more potent: tumor volume was significantly inhibited at 0.5 and 1 mg/kg/day. Thus, the in vivo efficacy of YD0171 is 9-times higher than that of AOAA. YD0171 (1 mg/kg/day) attenuated tumor growth and metastasis formation in the intracecal HCT116 tumor model. YD0171 (3 mg/kg/day) also reduced tumor growth in patient-derived tumor xenograft (PDTX) bearing athymic mice. YD0171 (3 mg/kg/day) induced the regression of established HCT116 tumors in vivo. A 5-day safety study in mice demonstrated that YD0171 at 20 mg/kg/day (given in two divided doses) does not increase plasma markers of organ injury, nor does it induce histological alterations in the liver or kidney. YD0171 caused a slight elevation in plasma homocysteine levels. In conclusion, the prodrug approach improves the pharmacological profile of AOAA; YD0171 represents a prototype for CBS inhibitory anticancer prodrugs. By targeting colorectal cancer bioenergetics, an emerging important hallmark of cancer, the approach exemplified herein may offer direct translational opportunities.

4.
Pharmacol Res ; 113(Pt A): 18-37, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27521834

RESUMO

Cystathionine-ß-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no potent and selective CBS inhibitors are available. Using a composite collection of 8871 clinically used drugs and well-annotated pharmacological compounds (including the LOPAC library, the FDA Approved Drug Library, the NIH Clinical Collection, the New Prestwick Chemical Library, the US Drug Collection, the International Drug Collection, the 'Killer Plates' collection and a small custom collection of PLP-dependent enzyme inhibitors), we conducted an in vitro screen in order to identify inhibitors for CBS using a primary 7-azido-4-methylcoumarin (AzMc) screen to detect CBS-derived hydrogen sulfide (H2S) production. Initial hits were subjected to counterscreens using the methylene blue assay (a secondary assay to measure H2S production) and were assessed for their ability to quench the H2S signal produced by the H2S donor compound GYY4137. Four compounds, hexachlorophene, tannic acid, aurintricarboxylic acid and benserazide showed concentration-dependent CBS inhibitory actions without scavenging H2S released from GYY4137, identifying them as direct CBS inhibitors. Hexachlorophene (IC50: ∼60µM), tannic acid (IC50: ∼40µM) and benserazide (IC50: ∼30µM) were less potent CBS inhibitors than the two reference compounds AOAA (IC50: ∼3µM) and NSC67078 (IC50: ∼1µM), while aurintricarboxylic acid (IC50: ∼3µM) was equipotent with AOAA. The second reference compound NSC67078 not only inhibited the CBS-induced AzMC fluorescence signal (IC50: ∼1µM), but also inhibited with the GYY4137-induced AzMC fluorescence signal with (IC50 of ∼6µM) indicative of scavenging/non-specific effects. Hexachlorophene (IC50: ∼6µM), tannic acid (IC50: ∼20µM), benserazide (IC50: ∼20µM), and NSC67078 (IC50: ∼0.3µM) inhibited HCT116 colon cancer cells proliferation with greater potency than AOAA (IC50: ∼300µM). In contrast, although a CBS inhibitor in the cell-free assay, aurintricarboxylic acid failed to inhibit HCT116 proliferation at lower concentrations, and stimulated cell proliferation at 300µM. Copper-containing compounds present in the libraries, were also found to be potent inhibitors of recombinant CBS; however this activity was due to the CBS inhibitory effect of copper ions themselves. However, copper ions, up to 300µM, did not inhibit HCT116 cell proliferation. Benserazide was only a weak inhibitor of the activity of the other H2S-generating enzymes CSE and 3-MST activity (16% and 35% inhibition at 100µM, respectively) in vitro. Benserazide suppressed HCT116 mitochondrial function and inhibited proliferation of the high CBS-expressing colon cancer cell line HT29, but not the low CBS-expressing line, LoVo. The major benserazide metabolite 2,3,4-trihydroxybenzylhydrazine also inhibited CBS activity and suppressed HCT116 cell proliferation in vitro. In an in vivo study of nude mice bearing human colon cancer cell xenografts, benserazide (50mg/kg/days.q.) prevented tumor growth. In silico docking simulations showed that benserazide binds in the active site of the enzyme and reacts with the PLP cofactor by forming reversible but kinetically stable Schiff base-like adducts with the formyl moiety of pyridoxal. We conclude that benserazide inhibits CBS activity and suppresses colon cancer cell proliferation and bioenergetics in vitro, and tumor growth in vivo. Further pharmacokinetic, pharmacodynamic and preclinical animal studies are necessary to evaluate the potential of repurposing benserazide for the treatment of colorectal cancers.


Assuntos
Benserazida/farmacologia , Neoplasias do Colo/tratamento farmacológico , Cistationina beta-Sintase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/farmacologia , Reposicionamento de Medicamentos/métodos , Metabolismo Energético/efeitos dos fármacos , Feminino , Células HCT116 , Células HT29 , Humanos , Hidrazinas/farmacologia , Sulfeto de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Terapias em Estudo/métodos
5.
Nucleic Acids Res ; 42(21): 13161-73, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25378300

RESUMO

The positive role of PARP1 in regulation of various nuclear DNA transactions is well established. Although a mitochondrial localization of PARP1 has been suggested, its role in the maintenance of the mitochondrial DNA is currently unknown. Here we investigated the role of PARP1 in the repair of the mitochondrial DNA in the baseline and oxidative stress conditions. We used wild-type A549 cells or cells depleted of PARP1. Our data show that intra-mitochondrial PARP1 interacts with a key mitochondrial-specific DNA base excision repair (BER) enzymes, namely EXOG and DNA polymerase gamma (Polγ), which under oxidative stress become poly(ADP-ribose)lated (PARylated). Interaction between mitochondrial BER enzymes was significantly affected in the presence of PARP1. Moreover, the repair of the oxidative-induced damage to the mitochondrial DNA in PARP1-depleted cells was found to be more robust compared to control counterpart. In addition, mitochondrial biogenesis was enhanced in PARP1-depleted cells, including mitochondrial DNA copy number and mitochondrial membrane potential. This observation was further confirmed by analysis of lung tissue isolated from WT and PARP1 KO mice. In summary, we conclude that mitochondrial PARP1, in opposite to nuclear PARP1, exerts a negative effect on several mitochondrial-specific transactions including the repair of the mitochondrial DNA.


Assuntos
Reparo do DNA , DNA Mitocondrial/análise , Mitocôndrias/enzimologia , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Linhagem Celular , Núcleo Celular/enzimologia , Núcleo Celular/genética , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Pulmão/química , Camundongos Knockout , Mitocôndrias/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo
6.
Mol Med ; 21(1): 666-675, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26322851

RESUMO

The classical role of hemoglobin in the erythrocytes is to carry oxygen from the lungs to the tissues via the circulation. However, hemoglobin also acts as a redox regulator and as a scavenger of the gaseous mediators nitric oxide (NO) and hydrogen sulfide (H2S). Here we show that upregulation of hemoglobin (α, ß and δ variants of globin proteins) occurs in human peripheral blood mononuclear cells (PBMCs) in critical illness (patients with severe third-degree burn injury and patients with sepsis). The increase in intracellular hemoglobin concentration is a result of a combination of enhanced protein expression and uptake from the extra-cellular space via a CD163-dependent mechanism. Intracellular hemoglobin preferentially localizes to the mitochondria, where it interacts with complex I and, on the one hand, increases mitochondrial respiratory rate and mitochondrial membrane potential, and on the other hand, protects from H2O2-induced cytotoxicity and mitochondrial DNA damage. Both burn injury and sepsis were associated with increased plasma levels of H2S. Incubation of mononuclear cells with H2S induced hemoglobin mRNA upregulation in PBMCs in vitro. Intracellular hemoglobin upregulation conferred a protective effect against cell dysfunction elicited by H2S. Hemoglobin uptake also was associated with a protection from, and induced the upregulation of, HIF-1α and Nrf2 mRNA. In conclusion, PBMCs in critical illness upregulate their intracellular hemoglobin levels by a combination of active synthesis and uptake from the extracellular medium. We propose that this process serves as a defense mechanism protecting the cell against cytotoxic concentrations of H2S and other gaseous transmitters, oxidants and free radicals produced in critically ill patients.

7.
Mol Med ; 21: 1-14, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25715337

RESUMO

Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and µmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3-1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1-3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants DL-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia.


Assuntos
Endotélio Vascular/fisiologia , Metabolismo Energético/fisiologia , Sulfeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Neovascularização Fisiológica , Sulfurtransferases/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Cisteína/administração & dosagem , Cisteína/análogos & derivados , Cisteína/farmacologia , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Células Endoteliais , Endotélio Vascular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Sulfeto de Hidrogênio/sangue , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Consumo de Oxigênio , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Sulfurtransferases/genética , Ácido Tióctico/farmacologia , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacologia
8.
Proc Natl Acad Sci U S A ; 109(23): 9161-6, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22570497

RESUMO

Hydrogen sulfide (H(2)S) is a unique gasotransmitter, with regulatory roles in the cardiovascular, nervous, and immune systems. Some of the vascular actions of H(2)S (stimulation of angiogenesis, relaxation of vascular smooth muscle) resemble those of nitric oxide (NO). Although it was generally assumed that H(2)S and NO exert their effects via separate pathways, the results of the current study show that H(2)S and NO are mutually required to elicit angiogenesis and vasodilatation. Exposure of endothelial cells to H(2)S increases intracellular cyclic guanosine 5'-monophosphate (cGMP) in a NO-dependent manner, and activated protein kinase G (PKG) and its downstream effector, the vasodilator-stimulated phosphoprotein (VASP). Inhibition of endothelial isoform of NO synthase (eNOS) or PKG-I abolishes the H(2)S-stimulated angiogenic response, and attenuated H(2)S-stimulated vasorelaxation, demonstrating the requirement of NO in vascular H(2)S signaling. Conversely, silencing of the H(2)S-producing enzyme cystathionine-γ-lyase abolishes NO-stimulated cGMP accumulation and angiogenesis and attenuates the acetylcholine-induced vasorelaxation, indicating a partial requirement of H(2)S in the vascular activity of NO. The actions of H(2)S and NO converge at cGMP; though H(2)S does not directly activate soluble guanylyl cyclase, it maintains a tonic inhibitory effect on PDE5, thereby delaying the degradation of cGMP. H(2)S also activates PI3K/Akt, and increases eNOS phosphorylation at its activating site S1177. The cooperative action of the two gasotransmitters on increasing and maintaining intracellular cGMP is essential for PKG activation and angiogenesis and vasorelaxation. H(2)S-induced wound healing and microvessel growth in matrigel plugs is suppressed by pharmacological inhibition or genetic ablation of eNOS. Thus, NO and H(2)S are mutually required for the physiological control of vascular function.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Neovascularização Fisiológica/fisiologia , Óxido Nítrico/farmacologia , Vasodilatação/fisiologia , Análise de Variância , Animais , Western Blotting , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Colágeno , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Cistationina gama-Liase/metabolismo , Combinação de Medicamentos , Sulfeto de Hidrogênio/metabolismo , Laminina , Camundongos , Proteínas dos Microfilamentos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteoglicanas , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
9.
Mol Pharmacol ; 86(4): 450-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25069723

RESUMO

We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial oxidant production and nuclear PARP1 activation (by 6 hours). These processes led to a functional impairment of mitochondria, culminating in cell death of mixed (necrotic/apoptotic) type. ß-Adrenoceptor blockade with propranolol or inhibition of its downstream cAMP/PKA signaling attenuated, while ß-adrenoceptor agonists and cAMP/PKA activators enhanced, the oxidant-mediated PARP1 activation. In the presence of cAMP, recombinant PKA directly phosphorylated recombinant PARP1 on serines 465 (in the automodification domain) and 782 and 785 (both in the catalytic domain). Inhibition of the ß-adrenergic receptor/cAMP/PKA axis protected against the oxidant-mediated cell injury. Propranolol also suppressed PARP1 activation in peripheral blood leukocytes during bacterial lipopolysaccharide (LPS)-induced systemic inflammation in mice. We conclude that the activation of mitochondrial PARP1 is an early, active participant in oxidant-induced cell death, which is under the control of ß-adrenoceptor/cAMP/PKA axis through the regulation of PARP1 activity by PARP1 phosphorylation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , DNA Mitocondrial/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Fosforilação , Propranolol/farmacologia
10.
Crit Care ; 18(5): 511, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25223540

RESUMO

INTRODUCTION: The goal of the current study was to investigate the effect of aging on the development of endothelial dysfunction in a murine model of sepsis, and to compare it with the effect of genetic deficiency of the endothelial isoform of nitric oxide synthase (eNOS). METHODS: Cecal ligation and puncture (CLP) was used to induce sepsis in mice. Survival rates were monitored and plasma indices of organ function were measured. Ex vivo studies included the measurement of vascular function in thoracic aortic rings, assessment of oxidative stress/cellular injury in various organs and the measurement of mitochondrial function in isolated liver mitochondria. RESULTS: eNOS deficiency and aging both exacerbated the mortality of sepsis. Both eNOS-deficient and aged mice exhibited a higher degree of sepsis-associated multiple organ dysfunction syndrome (MODS), infiltration of tissues with mononuclear cells and oxidative stress. A high degree of sepsis-induced vascular oxidative damage and endothelial dysfunction (evidenced by functional assays and multiple plasma markers of endothelial dysfunction) was detected in aortae isolated from both eNOS(-/-) and aged mice. There was a significant worsening of sepsis-induced mitochondrial dysfunction, both in eNOS-deficient mice and in aged mice. Comparison of the surviving and non-surviving groups of animals indicated that the severity of endothelial dysfunction may be a predictor of mortality of mice subjected to CLP-induced sepsis. CONCLUSIONS: Based on the studies in eNOS mice, we conclude that the lack of endothelial nitric oxide production, on its own, may be sufficient to markedly exacerbate the severity of septic shock. Aging markedly worsens the degree of endothelial dysfunction in sepsis, yielding a significant worsening of the overall outcome. Thus, endothelial dysfunction may constitute an early predictor and independent contributor to sepsis-associated MODS and mortality in aged mice.


Assuntos
Envelhecimento , Ceco , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Choque Séptico/fisiopatologia , Envelhecimento/metabolismo , Animais , Endotélio Vascular/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mortalidade/tendências , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/mortalidade , Técnicas de Cultura de Órgãos , Estresse Oxidativo/fisiologia , Punções/efeitos adversos , Choque Séptico/metabolismo , Choque Séptico/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA