Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-19, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129118

RESUMO

The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.

2.
Arch Toxicol ; 94(6): 1879-1897, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32388818

RESUMO

Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator-metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.


Assuntos
Antídotos/uso terapêutico , Intoxicação por Arsênico/tratamento farmacológico , Arsenicais/efeitos adversos , Quelantes/uso terapêutico , Poluentes Ambientais/efeitos adversos , Preparações de Plantas/uso terapêutico , Animais , Antídotos/efeitos adversos , Intoxicação por Arsênico/etiologia , Intoxicação por Arsênico/metabolismo , Arsenicais/metabolismo , Quelantes/efeitos adversos , Exposição Ambiental , Poluentes Ambientais/metabolismo , Humanos , Preparações de Plantas/efeitos adversos , Medição de Risco , Resultado do Tratamento
3.
Mol Neurobiol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970766

RESUMO

Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.

4.
Curr Med Chem ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38778600

RESUMO

This review summarizes the scientific knowledge concerning the impact of vitamins, magnesium, and trace elements on various mechanisms contributing to the possible treatment and prevention of COVID-19, including its delayed consequences. A search was conducted in various databases, including PubMed, Scopus, ClinicalTrials.- gov, and Web of Science. Among the main mechanisms involved in the effects of the studied micronutrients, immune-boosting, antioxidant and anti-inflammatory effects were also highlighted. The analyzed clinical trials confirmed that supplementation with higher daily doses of some micronutrients can reduce SARS-CoV-2 viral load and hospitalization time. The potential role of most known vitamins in preventing, treating COVID-19, and rehabilitating patients was considered. The most promising agents for combating COVID-19 and its consequences might be the following vitamins: vitamin D, ascorbic acid, polyunsaturated fatty acids (PUFAs), and some B complex vitamins. Inorganic elements deserving attention include magnesium and trace elements, such as zinc, selenium, copper, and iron. Some associations were found between micronutrient deficiencies and COVID-19 severity in children, adults, and older people. Patients can obtain the aforementioned micronutrients from natural food sources or as supplements/- drugs in various dosage forms. The reviewed micronutrients might be considered adjunctive treatment strategies for COVID-19 patients.

5.
Curr Pharm Des ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685809

RESUMO

COVID-19 is a viral disease that infects the lower airways, causing severe acute respiratory syndrome (SARS) and fatal pneumonia. The ripple effect of the COVID-19 outbreak has created serious problems in the healthcare systems of many countries and had far-reaching consequences for the global economy. Thus, effective control measures should be implemented for this coronavirus infection in the future. The ongoing episode of the SARS-CoV-2 sickness, COVID-19, in China, and the subsequent irregular spread of contamination to different nations, has alarmed the clinical and academic community primarily due to the deadly nature of this disease. Being a newly identified virus in the viral classification and having the highest mutation rate, rapid therapeutics are not readily available for treating this ailment, leading to the widespread of the disease and causing social issues for affected individuals. Evidence of Ayurveda and traditional Chinese medicine (TCM) has been found in ancient civilizations, such as those of the Hindus, Babylonians, Hebrews, and Arabs. Although TCM and Ayurvedic herbs do not promise to be very effective treatments for this pandemic, they can reduce infectivity and virulence by enhancing immunity and showing effectiveness in rehabilitation after COVID-19 disease. Thus, they could be used as sources of inhibitor molecules for certain phenomena, such as viral replication, attachment to the host, 3CL protease inhibition, 3a ion channel inhibitors, and reverse transcription inhibition. Medicinal plants from TCM and Ayurveda and their biologically active phytoconstituents can effectively modulate the targets and pathways relevant to inflammation and immune responses in human bodies. The present review analyzes the role of certain TCM and Ayurvedic medicinal plants in healing COVID-19 infection. Medicinal plants such as Glycyrrhiza glabra (licorice), Curcuma longa (turmeric), and Zingiber officinale (ginger) are regarded as the main antiviral herbs. Their extracts and individual bioactive compounds could be used as potential substances for developing remedies to prevent or cure the coronavirus disease. Generally, antiviral phytochemicals obtained from natural sources are considered potent candidates for fighting COVID-19 infection and rehabilitation after it.

6.
Curr Med Chem ; 31(10): 1214-1234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36748808

RESUMO

BACKGROUND: Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes. OBJECTIVE: This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage. METHODS: Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022. RESULTS: Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models. CONCLUSION: Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.


Assuntos
Alcaloides , Antineoplásicos , Berberina , Humanos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/química , Envelhecimento , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
7.
Environ Toxicol Pharmacol ; 95: 103970, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067934

RESUMO

Rapid industrial and technological development has impacted ecosystem homeostasis strongly. Arsenic is one of the most detrimental environmental toxins and its management with chelating agents remains a matter of concern due to associated adverse effects. Thus, safer and more effective alternative therapy is required to manage arsenic toxicity. Based on existing evidence, native and indigenous plant-based active biomolecules appear as a promising strategy to mitigate arsenic-induced toxicity with an acceptable safety profile. In this regard, various phytochemicals (flavonoids and stilbenoids) are considered important classes of polyphenolic compounds with antioxidant and chelation effects, which may facilitate the removal of arsenic from the body more effectively and safely with regard to conventional approaches. This review presents an overview of conventional chelating agents and the potential role of flavonoids and stilbenoids in ameliorating arsenic toxicity. This report may provide a roadmap for identifying novel prophylactic/therapeutic strategies for managing arsenic toxicity.


Assuntos
Intoxicação por Arsênico , Arsênio , Estilbenos , Antioxidantes/uso terapêutico , Arsênio/toxicidade , Intoxicação por Arsênico/tratamento farmacológico , Quelantes/uso terapêutico , Ecossistema , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Compostos Fitoquímicos/uso terapêutico , Estilbenos/uso terapêutico
8.
Oxid Med Cell Longev ; 2022: 3848084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237379

RESUMO

Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.


Assuntos
Antialérgicos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Ácido Elágico/farmacologia , Taninos Hidrolisáveis/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antialérgicos/metabolismo , Anti-Inflamatórios/metabolismo , Antineoplásicos/metabolismo , Ácido Elágico/metabolismo , Frutas/química , Frutas/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/metabolismo , Hipoglicemiantes/metabolismo , Fitoterapia/métodos , Extratos Vegetais/metabolismo , Plantas/química , Plantas/metabolismo , Polifenóis/metabolismo , Substâncias Protetoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA